|
@@ -927,7 +927,7 @@ class RandomExpand(Transform):
|
|
def __init__(self,
|
|
def __init__(self,
|
|
upper_ratio=4.,
|
|
upper_ratio=4.,
|
|
prob=.5,
|
|
prob=.5,
|
|
- im_padding_value=(127.5, 127.5, 127.5),
|
|
|
|
|
|
+ im_padding_value=127.5,
|
|
label_padding_value=255):
|
|
label_padding_value=255):
|
|
super(RandomExpand, self).__init__()
|
|
super(RandomExpand, self).__init__()
|
|
assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
|
|
assert upper_ratio > 1.01, "expand ratio must be larger than 1.01"
|
|
@@ -935,10 +935,6 @@ class RandomExpand(Transform):
|
|
self.prob = prob
|
|
self.prob = prob
|
|
assert isinstance(im_padding_value, (Number, Sequence)), \
|
|
assert isinstance(im_padding_value, (Number, Sequence)), \
|
|
"fill value must be either float or sequence"
|
|
"fill value must be either float or sequence"
|
|
- if isinstance(im_padding_value, Number):
|
|
|
|
- im_padding_value = (im_padding_value, ) * 3
|
|
|
|
- if not isinstance(im_padding_value, tuple):
|
|
|
|
- im_padding_value = tuple(im_padding_value)
|
|
|
|
self.im_padding_value = im_padding_value
|
|
self.im_padding_value = im_padding_value
|
|
self.label_padding_value = label_padding_value
|
|
self.label_padding_value = label_padding_value
|
|
|
|
|
|
@@ -967,7 +963,7 @@ class Padding(Transform):
|
|
target_size=None,
|
|
target_size=None,
|
|
pad_mode=0,
|
|
pad_mode=0,
|
|
offsets=None,
|
|
offsets=None,
|
|
- im_padding_value=(127.5, 127.5, 127.5),
|
|
|
|
|
|
+ im_padding_value=127.5,
|
|
label_padding_value=255,
|
|
label_padding_value=255,
|
|
size_divisor=32):
|
|
size_divisor=32):
|
|
"""
|
|
"""
|
|
@@ -1005,9 +1001,9 @@ class Padding(Transform):
|
|
|
|
|
|
def apply_im(self, image, offsets, target_size):
|
|
def apply_im(self, image, offsets, target_size):
|
|
x, y = offsets
|
|
x, y = offsets
|
|
- im_h, im_w = image.shape[:2]
|
|
|
|
|
|
+ im_h, im_w, channel = image.shape[:3]
|
|
h, w = target_size
|
|
h, w = target_size
|
|
- canvas = np.ones((h, w, 3), dtype=np.float32)
|
|
|
|
|
|
+ canvas = np.ones((h, w, channel), dtype=np.float32)
|
|
canvas *= np.array(self.im_padding_value, dtype=np.float32)
|
|
canvas *= np.array(self.im_padding_value, dtype=np.float32)
|
|
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
|
|
canvas[y:y + im_h, x:x + im_w, :] = image.astype(np.float32)
|
|
return canvas
|
|
return canvas
|