|
@@ -0,0 +1,671 @@
|
|
|
+# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
|
+#
|
|
|
+# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
+# you may not use this file except in compliance with the License.
|
|
|
+# You may obtain a copy of the License at
|
|
|
+#
|
|
|
+# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
+#
|
|
|
+# Unless required by applicable law or agreed to in writing, software
|
|
|
+# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
+# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
+# See the License for the specific language governing permissions and
|
|
|
+# limitations under the License.
|
|
|
+
|
|
|
+import math
|
|
|
+import os.path as osp
|
|
|
+import numpy as np
|
|
|
+import cv2
|
|
|
+from collections import OrderedDict
|
|
|
+import paddle
|
|
|
+import paddle.nn.functional as F
|
|
|
+from paddle.static import InputSpec
|
|
|
+import paddlers.models.ppseg as paddleseg
|
|
|
+import paddlers
|
|
|
+from paddlers.transforms import arrange_transforms
|
|
|
+from paddlers.utils import get_single_card_bs, DisablePrint
|
|
|
+import paddlers.utils.logging as logging
|
|
|
+from .base import BaseModel
|
|
|
+from .utils import seg_metrics as metrics
|
|
|
+from paddlers.utils.checkpoint import seg_pretrain_weights_dict
|
|
|
+from paddlers.transforms import Decode, Resize
|
|
|
+from paddlers.models.ppcd import CDNet
|
|
|
+
|
|
|
+__all__ = ["CDNet"]
|
|
|
+
|
|
|
+
|
|
|
+class BaseChangeDetector(BaseModel):
|
|
|
+ def __init__(self,
|
|
|
+ model_name,
|
|
|
+ num_classes=2,
|
|
|
+ use_mixed_loss=False,
|
|
|
+ **params):
|
|
|
+ self.init_params = locals()
|
|
|
+ if 'with_net' in self.init_params:
|
|
|
+ del self.init_params['with_net']
|
|
|
+ super(BaseChangeDetector, self).__init__('changedetector')
|
|
|
+ if model_name not in __all__:
|
|
|
+ raise Exception("ERROR: There's no model named {}.".format(
|
|
|
+ model_name))
|
|
|
+ self.model_name = model_name
|
|
|
+ self.num_classes = num_classes
|
|
|
+ self.use_mixed_loss = use_mixed_loss
|
|
|
+ self.losses = None
|
|
|
+ self.labels = None
|
|
|
+ if params.get('with_net', True):
|
|
|
+ params.pop('with_net', None)
|
|
|
+ self.net = self.build_net(**params)
|
|
|
+ self.find_unused_parameters = True
|
|
|
+
|
|
|
+ def build_net(self, **params):
|
|
|
+ # TODO: add other model
|
|
|
+ net = CDNet(num_classes=self.num_classes, **params)
|
|
|
+ return net
|
|
|
+
|
|
|
+ def _fix_transforms_shape(self, image_shape):
|
|
|
+ if hasattr(self, 'test_transforms'):
|
|
|
+ if self.test_transforms is not None:
|
|
|
+ has_resize_op = False
|
|
|
+ resize_op_idx = -1
|
|
|
+ normalize_op_idx = len(self.test_transforms.transforms)
|
|
|
+ for idx, op in enumerate(self.test_transforms.transforms):
|
|
|
+ name = op.__class__.__name__
|
|
|
+ if name == 'Normalize':
|
|
|
+ normalize_op_idx = idx
|
|
|
+ if 'Resize' in name:
|
|
|
+ has_resize_op = True
|
|
|
+ resize_op_idx = idx
|
|
|
+
|
|
|
+ if not has_resize_op:
|
|
|
+ self.test_transforms.transforms.insert(
|
|
|
+ normalize_op_idx, Resize(target_size=image_shape))
|
|
|
+ else:
|
|
|
+ self.test_transforms.transforms[resize_op_idx] = Resize(
|
|
|
+ target_size=image_shape)
|
|
|
+
|
|
|
+ def _get_test_inputs(self, image_shape):
|
|
|
+ if image_shape is not None:
|
|
|
+ if len(image_shape) == 2:
|
|
|
+ image_shape = [1, 3] + image_shape
|
|
|
+ self._fix_transforms_shape(image_shape[-2:])
|
|
|
+ else:
|
|
|
+ image_shape = [None, 3, -1, -1]
|
|
|
+ self.fixed_input_shape = image_shape
|
|
|
+ input_spec = [
|
|
|
+ InputSpec(
|
|
|
+ shape=image_shape, name='image', dtype='float32')
|
|
|
+ ]
|
|
|
+ return input_spec
|
|
|
+
|
|
|
+ def run(self, net, inputs, mode):
|
|
|
+ net_out = net(inputs[0], inputs[1])
|
|
|
+ logit = net_out[0]
|
|
|
+ outputs = OrderedDict()
|
|
|
+ if mode == 'test':
|
|
|
+ origin_shape = inputs[2]
|
|
|
+ if self.status == 'Infer':
|
|
|
+ label_map_list, score_map_list = self._postprocess(
|
|
|
+ net_out, origin_shape, transforms=inputs[3])
|
|
|
+ else:
|
|
|
+ logit_list = self._postprocess(
|
|
|
+ logit, origin_shape, transforms=inputs[3])
|
|
|
+ label_map_list = []
|
|
|
+ score_map_list = []
|
|
|
+ for logit in logit_list:
|
|
|
+ logit = paddle.transpose(logit, perm=[0, 2, 3, 1]) # NHWC
|
|
|
+ label_map_list.append(
|
|
|
+ paddle.argmax(
|
|
|
+ logit, axis=-1, keepdim=False, dtype='int32')
|
|
|
+ .squeeze().numpy())
|
|
|
+ score_map_list.append(
|
|
|
+ F.softmax(
|
|
|
+ logit, axis=-1).squeeze().numpy().astype(
|
|
|
+ 'float32'))
|
|
|
+ outputs['label_map'] = label_map_list
|
|
|
+ outputs['score_map'] = score_map_list
|
|
|
+
|
|
|
+ if mode == 'eval':
|
|
|
+ if self.status == 'Infer':
|
|
|
+ pred = paddle.unsqueeze(net_out[0], axis=1) # NCHW
|
|
|
+ else:
|
|
|
+ pred = paddle.argmax(
|
|
|
+ logit, axis=1, keepdim=True, dtype='int32')
|
|
|
+ label = inputs[2]
|
|
|
+ origin_shape = [label.shape[-2:]]
|
|
|
+ pred = self._postprocess(
|
|
|
+ pred, origin_shape, transforms=inputs[3])[0] # NCHW
|
|
|
+ intersect_area, pred_area, label_area = paddleseg.utils.metrics.calculate_area(
|
|
|
+ pred, label, self.num_classes)
|
|
|
+ outputs['intersect_area'] = intersect_area
|
|
|
+ outputs['pred_area'] = pred_area
|
|
|
+ outputs['label_area'] = label_area
|
|
|
+ outputs['conf_mat'] = metrics.confusion_matrix(pred, label,
|
|
|
+ self.num_classes)
|
|
|
+ if mode == 'train':
|
|
|
+ loss_list = metrics.loss_computation(
|
|
|
+ logits_list=net_out, labels=inputs[2], losses=self.losses)
|
|
|
+ loss = sum(loss_list)
|
|
|
+ outputs['loss'] = loss
|
|
|
+ return outputs
|
|
|
+
|
|
|
+ def default_loss(self):
|
|
|
+ if isinstance(self.use_mixed_loss, bool):
|
|
|
+ if self.use_mixed_loss:
|
|
|
+ losses = [
|
|
|
+ paddleseg.models.CrossEntropyLoss(),
|
|
|
+ paddleseg.models.LovaszSoftmaxLoss()
|
|
|
+ ]
|
|
|
+ coef = [.8, .2]
|
|
|
+ loss_type = [
|
|
|
+ paddleseg.models.MixedLoss(
|
|
|
+ losses=losses, coef=coef),
|
|
|
+ ]
|
|
|
+ else:
|
|
|
+ loss_type = [paddleseg.models.CrossEntropyLoss()]
|
|
|
+ else:
|
|
|
+ losses, coef = list(zip(*self.use_mixed_loss))
|
|
|
+ if not set(losses).issubset(
|
|
|
+ ['CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss']):
|
|
|
+ raise ValueError(
|
|
|
+ "Only 'CrossEntropyLoss', 'DiceLoss', 'LovaszSoftmaxLoss' are supported."
|
|
|
+ )
|
|
|
+ losses = [getattr(paddleseg.models, loss)() for loss in losses]
|
|
|
+ loss_type = [
|
|
|
+ paddleseg.models.MixedLoss(
|
|
|
+ losses=losses, coef=list(coef))
|
|
|
+ ]
|
|
|
+ if self.model_name == 'FastSCNN':
|
|
|
+ loss_type *= 2
|
|
|
+ loss_coef = [1.0, 0.4]
|
|
|
+ elif self.model_name == 'BiSeNetV2':
|
|
|
+ loss_type *= 5
|
|
|
+ loss_coef = [1.0] * 5
|
|
|
+ else:
|
|
|
+ loss_coef = [1.0]
|
|
|
+ losses = {'types': loss_type, 'coef': loss_coef}
|
|
|
+ return losses
|
|
|
+
|
|
|
+ def default_optimizer(self,
|
|
|
+ parameters,
|
|
|
+ learning_rate,
|
|
|
+ num_epochs,
|
|
|
+ num_steps_each_epoch,
|
|
|
+ lr_decay_power=0.9):
|
|
|
+ decay_step = num_epochs * num_steps_each_epoch
|
|
|
+ lr_scheduler = paddle.optimizer.lr.PolynomialDecay(
|
|
|
+ learning_rate, decay_step, end_lr=0, power=lr_decay_power)
|
|
|
+ optimizer = paddle.optimizer.Momentum(
|
|
|
+ learning_rate=lr_scheduler,
|
|
|
+ parameters=parameters,
|
|
|
+ momentum=0.9,
|
|
|
+ weight_decay=4e-5)
|
|
|
+ return optimizer
|
|
|
+
|
|
|
+ def train(self,
|
|
|
+ num_epochs,
|
|
|
+ train_dataset,
|
|
|
+ train_batch_size=2,
|
|
|
+ eval_dataset=None,
|
|
|
+ optimizer=None,
|
|
|
+ save_interval_epochs=1,
|
|
|
+ log_interval_steps=2,
|
|
|
+ save_dir='output',
|
|
|
+ pretrain_weights='CITYSCAPES',
|
|
|
+ learning_rate=0.01,
|
|
|
+ lr_decay_power=0.9,
|
|
|
+ early_stop=False,
|
|
|
+ early_stop_patience=5,
|
|
|
+ use_vdl=True,
|
|
|
+ resume_checkpoint=None):
|
|
|
+ """
|
|
|
+ Train the model.
|
|
|
+ Args:
|
|
|
+ num_epochs(int): The number of epochs.
|
|
|
+ train_dataset(paddlers.dataset): Training dataset.
|
|
|
+ train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
|
|
|
+ eval_dataset(paddlers.dataset, optional):
|
|
|
+ Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
|
|
|
+ optimizer(paddle.optimizer.Optimizer or None, optional):
|
|
|
+ Optimizer used in training. If None, a default optimizer is used. Defaults to None.
|
|
|
+ save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
|
|
+ log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
|
|
+ save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
+ pretrain_weights(str or None, optional):
|
|
|
+ None or name/path of pretrained weights. If None, no pretrained weights will be loaded. Defaults to 'CITYSCAPES'.
|
|
|
+ learning_rate(float, optional): Learning rate for training. Defaults to .025.
|
|
|
+ lr_decay_power(float, optional): Learning decay power. Defaults to .9.
|
|
|
+ early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
|
|
+ early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
|
|
+ use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
|
|
+ resume_checkpoint(str or None, optional): The path of the checkpoint to resume training from.
|
|
|
+ If None, no training checkpoint will be resumed. At most one of `resume_checkpoint` and
|
|
|
+ `pretrain_weights` can be set simultaneously. Defaults to None.
|
|
|
+
|
|
|
+ """
|
|
|
+ if self.status == 'Infer':
|
|
|
+ logging.error(
|
|
|
+ "Exported inference model does not support training.",
|
|
|
+ exit=True)
|
|
|
+ if pretrain_weights is not None and resume_checkpoint is not None:
|
|
|
+ logging.error(
|
|
|
+ "pretrain_weights and resume_checkpoint cannot be set simultaneously.",
|
|
|
+ exit=True)
|
|
|
+ self.labels = train_dataset.labels
|
|
|
+ if self.losses is None:
|
|
|
+ self.losses = self.default_loss()
|
|
|
+
|
|
|
+ if optimizer is None:
|
|
|
+ num_steps_each_epoch = train_dataset.num_samples // train_batch_size
|
|
|
+ self.optimizer = self.default_optimizer(
|
|
|
+ self.net.parameters(), learning_rate, num_epochs,
|
|
|
+ num_steps_each_epoch, lr_decay_power)
|
|
|
+ else:
|
|
|
+ self.optimizer = optimizer
|
|
|
+
|
|
|
+ if pretrain_weights is not None and not osp.exists(pretrain_weights):
|
|
|
+ if pretrain_weights not in seg_pretrain_weights_dict[
|
|
|
+ self.model_name]:
|
|
|
+ logging.warning(
|
|
|
+ "Path of pretrain_weights('{}') does not exist!".format(
|
|
|
+ pretrain_weights))
|
|
|
+ logging.warning("Pretrain_weights is forcibly set to '{}'. "
|
|
|
+ "If don't want to use pretrain weights, "
|
|
|
+ "set pretrain_weights to be None.".format(
|
|
|
+ seg_pretrain_weights_dict[self.model_name][
|
|
|
+ 0]))
|
|
|
+ pretrain_weights = seg_pretrain_weights_dict[self.model_name][
|
|
|
+ 0]
|
|
|
+ elif pretrain_weights is not None and osp.exists(pretrain_weights):
|
|
|
+ if osp.splitext(pretrain_weights)[-1] != '.pdparams':
|
|
|
+ logging.error(
|
|
|
+ "Invalid pretrain weights. Please specify a '.pdparams' file.",
|
|
|
+ exit=True)
|
|
|
+ pretrained_dir = osp.join(save_dir, 'pretrain')
|
|
|
+ is_backbone_weights = pretrain_weights == 'IMAGENET'
|
|
|
+ self.net_initialize(
|
|
|
+ pretrain_weights=pretrain_weights,
|
|
|
+ save_dir=pretrained_dir,
|
|
|
+ resume_checkpoint=resume_checkpoint,
|
|
|
+ is_backbone_weights=is_backbone_weights)
|
|
|
+
|
|
|
+ self.train_loop(
|
|
|
+ num_epochs=num_epochs,
|
|
|
+ train_dataset=train_dataset,
|
|
|
+ train_batch_size=train_batch_size,
|
|
|
+ eval_dataset=eval_dataset,
|
|
|
+ save_interval_epochs=save_interval_epochs,
|
|
|
+ log_interval_steps=log_interval_steps,
|
|
|
+ save_dir=save_dir,
|
|
|
+ early_stop=early_stop,
|
|
|
+ early_stop_patience=early_stop_patience,
|
|
|
+ use_vdl=use_vdl)
|
|
|
+
|
|
|
+ def quant_aware_train(self,
|
|
|
+ num_epochs,
|
|
|
+ train_dataset,
|
|
|
+ train_batch_size=2,
|
|
|
+ eval_dataset=None,
|
|
|
+ optimizer=None,
|
|
|
+ save_interval_epochs=1,
|
|
|
+ log_interval_steps=2,
|
|
|
+ save_dir='output',
|
|
|
+ learning_rate=0.0001,
|
|
|
+ lr_decay_power=0.9,
|
|
|
+ early_stop=False,
|
|
|
+ early_stop_patience=5,
|
|
|
+ use_vdl=True,
|
|
|
+ resume_checkpoint=None,
|
|
|
+ quant_config=None):
|
|
|
+ """
|
|
|
+ Quantization-aware training.
|
|
|
+ Args:
|
|
|
+ num_epochs(int): The number of epochs.
|
|
|
+ train_dataset(paddlers.dataset): Training dataset.
|
|
|
+ train_batch_size(int, optional): Total batch size among all cards used in training. Defaults to 2.
|
|
|
+ eval_dataset(paddlers.dataset, optional):
|
|
|
+ Evaluation dataset. If None, the model will not be evaluated furing training process. Defaults to None.
|
|
|
+ optimizer(paddle.optimizer.Optimizer or None, optional):
|
|
|
+ Optimizer used in training. If None, a default optimizer is used. Defaults to None.
|
|
|
+ save_interval_epochs(int, optional): Epoch interval for saving the model. Defaults to 1.
|
|
|
+ log_interval_steps(int, optional): Step interval for printing training information. Defaults to 10.
|
|
|
+ save_dir(str, optional): Directory to save the model. Defaults to 'output'.
|
|
|
+ learning_rate(float, optional): Learning rate for training. Defaults to .025.
|
|
|
+ lr_decay_power(float, optional): Learning decay power. Defaults to .9.
|
|
|
+ early_stop(bool, optional): Whether to adopt early stop strategy. Defaults to False.
|
|
|
+ early_stop_patience(int, optional): Early stop patience. Defaults to 5.
|
|
|
+ use_vdl(bool, optional): Whether to use VisualDL to monitor the training process. Defaults to True.
|
|
|
+ quant_config(dict or None, optional): Quantization configuration. If None, a default rule of thumb
|
|
|
+ configuration will be used. Defaults to None.
|
|
|
+ resume_checkpoint(str or None, optional): The path of the checkpoint to resume quantization-aware training
|
|
|
+ from. If None, no training checkpoint will be resumed. Defaults to None.
|
|
|
+
|
|
|
+ """
|
|
|
+ self._prepare_qat(quant_config)
|
|
|
+ self.train(
|
|
|
+ num_epochs=num_epochs,
|
|
|
+ train_dataset=train_dataset,
|
|
|
+ train_batch_size=train_batch_size,
|
|
|
+ eval_dataset=eval_dataset,
|
|
|
+ optimizer=optimizer,
|
|
|
+ save_interval_epochs=save_interval_epochs,
|
|
|
+ log_interval_steps=log_interval_steps,
|
|
|
+ save_dir=save_dir,
|
|
|
+ pretrain_weights=None,
|
|
|
+ learning_rate=learning_rate,
|
|
|
+ lr_decay_power=lr_decay_power,
|
|
|
+ early_stop=early_stop,
|
|
|
+ early_stop_patience=early_stop_patience,
|
|
|
+ use_vdl=use_vdl,
|
|
|
+ resume_checkpoint=resume_checkpoint)
|
|
|
+
|
|
|
+ def evaluate(self, eval_dataset, batch_size=1, return_details=False):
|
|
|
+ """
|
|
|
+ Evaluate the model.
|
|
|
+ Args:
|
|
|
+ eval_dataset(paddlers.dataset): Evaluation dataset.
|
|
|
+ batch_size(int, optional): Total batch size among all cards used for evaluation. Defaults to 1.
|
|
|
+ return_details(bool, optional): Whether to return evaluation details. Defaults to False.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ collections.OrderedDict with key-value pairs:
|
|
|
+ {"miou": `mean intersection over union`,
|
|
|
+ "category_iou": `category-wise mean intersection over union`,
|
|
|
+ "oacc": `overall accuracy`,
|
|
|
+ "category_acc": `category-wise accuracy`,
|
|
|
+ "kappa": ` kappa coefficient`,
|
|
|
+ "category_F1-score": `F1 score`}.
|
|
|
+
|
|
|
+ """
|
|
|
+ arrange_transforms(
|
|
|
+ model_type=self.model_type,
|
|
|
+ transforms=eval_dataset.transforms,
|
|
|
+ mode='eval')
|
|
|
+
|
|
|
+ self.net.eval()
|
|
|
+ nranks = paddle.distributed.get_world_size()
|
|
|
+ local_rank = paddle.distributed.get_rank()
|
|
|
+ if nranks > 1:
|
|
|
+ # Initialize parallel environment if not done.
|
|
|
+ if not paddle.distributed.parallel.parallel_helper._is_parallel_ctx_initialized(
|
|
|
+ ):
|
|
|
+ paddle.distributed.init_parallel_env()
|
|
|
+
|
|
|
+ batch_size_each_card = get_single_card_bs(batch_size)
|
|
|
+ if batch_size_each_card > 1:
|
|
|
+ batch_size_each_card = 1
|
|
|
+ batch_size = batch_size_each_card * paddlers.env_info['num']
|
|
|
+ logging.warning(
|
|
|
+ "Segmenter only supports batch_size=1 for each gpu/cpu card " \
|
|
|
+ "during evaluation, so batch_size " \
|
|
|
+ "is forcibly set to {}.".format(batch_size))
|
|
|
+ self.eval_data_loader = self.build_data_loader(
|
|
|
+ eval_dataset, batch_size=batch_size, mode='eval')
|
|
|
+
|
|
|
+ intersect_area_all = 0
|
|
|
+ pred_area_all = 0
|
|
|
+ label_area_all = 0
|
|
|
+ conf_mat_all = []
|
|
|
+ logging.info(
|
|
|
+ "Start to evaluate(total_samples={}, total_steps={})...".format(
|
|
|
+ eval_dataset.num_samples,
|
|
|
+ math.ceil(eval_dataset.num_samples * 1.0 / batch_size)))
|
|
|
+ with paddle.no_grad():
|
|
|
+ for step, data in enumerate(self.eval_data_loader):
|
|
|
+ data.append(eval_dataset.transforms.transforms)
|
|
|
+ outputs = self.run(self.net, data, 'eval')
|
|
|
+ pred_area = outputs['pred_area']
|
|
|
+ label_area = outputs['label_area']
|
|
|
+ intersect_area = outputs['intersect_area']
|
|
|
+ conf_mat = outputs['conf_mat']
|
|
|
+
|
|
|
+ # Gather from all ranks
|
|
|
+ if nranks > 1:
|
|
|
+ intersect_area_list = []
|
|
|
+ pred_area_list = []
|
|
|
+ label_area_list = []
|
|
|
+ conf_mat_list = []
|
|
|
+ paddle.distributed.all_gather(intersect_area_list,
|
|
|
+ intersect_area)
|
|
|
+ paddle.distributed.all_gather(pred_area_list, pred_area)
|
|
|
+ paddle.distributed.all_gather(label_area_list, label_area)
|
|
|
+ paddle.distributed.all_gather(conf_mat_list, conf_mat)
|
|
|
+
|
|
|
+ # Some image has been evaluated and should be eliminated in last iter
|
|
|
+ if (step + 1) * nranks > len(eval_dataset):
|
|
|
+ valid = len(eval_dataset) - step * nranks
|
|
|
+ intersect_area_list = intersect_area_list[:valid]
|
|
|
+ pred_area_list = pred_area_list[:valid]
|
|
|
+ label_area_list = label_area_list[:valid]
|
|
|
+ conf_mat_list = conf_mat_list[:valid]
|
|
|
+
|
|
|
+ intersect_area_all += sum(intersect_area_list)
|
|
|
+ pred_area_all += sum(pred_area_list)
|
|
|
+ label_area_all += sum(label_area_list)
|
|
|
+ conf_mat_all.extend(conf_mat_list)
|
|
|
+
|
|
|
+ else:
|
|
|
+ intersect_area_all = intersect_area_all + intersect_area
|
|
|
+ pred_area_all = pred_area_all + pred_area
|
|
|
+ label_area_all = label_area_all + label_area
|
|
|
+ conf_mat_all.append(conf_mat)
|
|
|
+ class_iou, miou = paddleseg.utils.metrics.mean_iou(
|
|
|
+ intersect_area_all, pred_area_all, label_area_all)
|
|
|
+ # TODO 确认是按oacc还是macc
|
|
|
+ class_acc, oacc = paddleseg.utils.metrics.accuracy(intersect_area_all,
|
|
|
+ pred_area_all)
|
|
|
+ kappa = paddleseg.utils.metrics.kappa(intersect_area_all,
|
|
|
+ pred_area_all, label_area_all)
|
|
|
+ category_f1score = metrics.f1_score(intersect_area_all, pred_area_all,
|
|
|
+ label_area_all)
|
|
|
+ eval_metrics = OrderedDict(
|
|
|
+ zip([
|
|
|
+ 'miou', 'category_iou', 'oacc', 'category_acc', 'kappa',
|
|
|
+ 'category_F1-score'
|
|
|
+ ], [miou, class_iou, oacc, class_acc, kappa, category_f1score]))
|
|
|
+
|
|
|
+ if return_details:
|
|
|
+ conf_mat = sum(conf_mat_all)
|
|
|
+ eval_details = {'confusion_matrix': conf_mat.tolist()}
|
|
|
+ return eval_metrics, eval_details
|
|
|
+ return eval_metrics
|
|
|
+
|
|
|
+ def predict(self, img_file, transforms=None):
|
|
|
+ """
|
|
|
+ Do inference.
|
|
|
+ Args:
|
|
|
+ Args:
|
|
|
+ img_file(List[np.ndarray or str], str or np.ndarray):
|
|
|
+ Image path or decoded image data in a BGR format, which also could constitute a list,
|
|
|
+ meaning all images to be predicted as a mini-batch.
|
|
|
+ transforms(paddlers.transforms.Compose or None, optional):
|
|
|
+ Transforms for inputs. If None, the transforms for evaluation process will be used. Defaults to None.
|
|
|
+
|
|
|
+ Returns:
|
|
|
+ If img_file is a string or np.array, the result is a dict with key-value pairs:
|
|
|
+ {"label map": `label map`, "score_map": `score map`}.
|
|
|
+ If img_file is a list, the result is a list composed of dicts with the corresponding fields:
|
|
|
+ label_map(np.ndarray): the predicted label map (HW)
|
|
|
+ score_map(np.ndarray): the prediction score map (HWC)
|
|
|
+
|
|
|
+ """
|
|
|
+ if transforms is None and not hasattr(self, 'test_transforms'):
|
|
|
+ raise Exception("transforms need to be defined, now is None.")
|
|
|
+ if transforms is None:
|
|
|
+ transforms = self.test_transforms
|
|
|
+ if isinstance(img_file, (str, np.ndarray)):
|
|
|
+ images = [img_file]
|
|
|
+ else:
|
|
|
+ images = img_file
|
|
|
+ batch_im, batch_origin_shape = self._preprocess(images, transforms,
|
|
|
+ self.model_type)
|
|
|
+ self.net.eval()
|
|
|
+ data = (batch_im, batch_origin_shape, transforms.transforms)
|
|
|
+ outputs = self.run(self.net, data, 'test')
|
|
|
+ label_map_list = outputs['label_map']
|
|
|
+ score_map_list = outputs['score_map']
|
|
|
+ if isinstance(img_file, list):
|
|
|
+ prediction = [{
|
|
|
+ 'label_map': l,
|
|
|
+ 'score_map': s
|
|
|
+ } for l, s in zip(label_map_list, score_map_list)]
|
|
|
+ else:
|
|
|
+ prediction = {
|
|
|
+ 'label_map': label_map_list[0],
|
|
|
+ 'score_map': score_map_list[0]
|
|
|
+ }
|
|
|
+ return prediction
|
|
|
+
|
|
|
+ def _preprocess(self, images, transforms, to_tensor=True):
|
|
|
+ arrange_transforms(
|
|
|
+ model_type=self.model_type, transforms=transforms, mode='test')
|
|
|
+ batch_im = list()
|
|
|
+ batch_ori_shape = list()
|
|
|
+ for im in images:
|
|
|
+ sample = {'image': im}
|
|
|
+ if isinstance(sample['image'], str):
|
|
|
+ sample = Decode(to_rgb=False)(sample)
|
|
|
+ ori_shape = sample['image'].shape[:2]
|
|
|
+ im = transforms(sample)[0]
|
|
|
+ batch_im.append(im)
|
|
|
+ batch_ori_shape.append(ori_shape)
|
|
|
+ if to_tensor:
|
|
|
+ batch_im = paddle.to_tensor(batch_im)
|
|
|
+ else:
|
|
|
+ batch_im = np.asarray(batch_im)
|
|
|
+
|
|
|
+ return batch_im, batch_ori_shape
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def get_transforms_shape_info(batch_ori_shape, transforms):
|
|
|
+ batch_restore_list = list()
|
|
|
+ for ori_shape in batch_ori_shape:
|
|
|
+ restore_list = list()
|
|
|
+ h, w = ori_shape[0], ori_shape[1]
|
|
|
+ for op in transforms:
|
|
|
+ if op.__class__.__name__ == 'Resize':
|
|
|
+ restore_list.append(('resize', (h, w)))
|
|
|
+ h, w = op.target_size
|
|
|
+ elif op.__class__.__name__ == 'ResizeByShort':
|
|
|
+ restore_list.append(('resize', (h, w)))
|
|
|
+ im_short_size = min(h, w)
|
|
|
+ im_long_size = max(h, w)
|
|
|
+ scale = float(op.short_size) / float(im_short_size)
|
|
|
+ if 0 < op.max_size < np.round(scale * im_long_size):
|
|
|
+ scale = float(op.max_size) / float(im_long_size)
|
|
|
+ h = int(round(h * scale))
|
|
|
+ w = int(round(w * scale))
|
|
|
+ elif op.__class__.__name__ == 'ResizeByLong':
|
|
|
+ restore_list.append(('resize', (h, w)))
|
|
|
+ im_long_size = max(h, w)
|
|
|
+ scale = float(op.long_size) / float(im_long_size)
|
|
|
+ h = int(round(h * scale))
|
|
|
+ w = int(round(w * scale))
|
|
|
+ elif op.__class__.__name__ == 'Padding':
|
|
|
+ if op.target_size:
|
|
|
+ target_h, target_w = op.target_size
|
|
|
+ else:
|
|
|
+ target_h = int(
|
|
|
+ (np.ceil(h / op.size_divisor) * op.size_divisor))
|
|
|
+ target_w = int(
|
|
|
+ (np.ceil(w / op.size_divisor) * op.size_divisor))
|
|
|
+
|
|
|
+ if op.pad_mode == -1:
|
|
|
+ offsets = op.offsets
|
|
|
+ elif op.pad_mode == 0:
|
|
|
+ offsets = [0, 0]
|
|
|
+ elif op.pad_mode == 1:
|
|
|
+ offsets = [(target_h - h) // 2, (target_w - w) // 2]
|
|
|
+ else:
|
|
|
+ offsets = [target_h - h, target_w - w]
|
|
|
+ restore_list.append(('padding', (h, w), offsets))
|
|
|
+ h, w = target_h, target_w
|
|
|
+
|
|
|
+ batch_restore_list.append(restore_list)
|
|
|
+ return batch_restore_list
|
|
|
+
|
|
|
+ def _postprocess(self, batch_pred, batch_origin_shape, transforms):
|
|
|
+ batch_restore_list = BaseSegmenter.get_transforms_shape_info(
|
|
|
+ batch_origin_shape, transforms)
|
|
|
+ if isinstance(batch_pred, (tuple, list)) and self.status == 'Infer':
|
|
|
+ return self._infer_postprocess(
|
|
|
+ batch_label_map=batch_pred[0],
|
|
|
+ batch_score_map=batch_pred[1],
|
|
|
+ batch_restore_list=batch_restore_list)
|
|
|
+ results = []
|
|
|
+ if batch_pred.dtype == paddle.float32:
|
|
|
+ mode = 'bilinear'
|
|
|
+ else:
|
|
|
+ mode = 'nearest'
|
|
|
+ for pred, restore_list in zip(batch_pred, batch_restore_list):
|
|
|
+ pred = paddle.unsqueeze(pred, axis=0)
|
|
|
+ for item in restore_list[::-1]:
|
|
|
+ h, w = item[1][0], item[1][1]
|
|
|
+ if item[0] == 'resize':
|
|
|
+ pred = F.interpolate(
|
|
|
+ pred, (h, w), mode=mode, data_format='NCHW')
|
|
|
+ elif item[0] == 'padding':
|
|
|
+ x, y = item[2]
|
|
|
+ pred = pred[:, :, y:y + h, x:x + w]
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ results.append(pred)
|
|
|
+ return results
|
|
|
+
|
|
|
+ def _infer_postprocess(self, batch_label_map, batch_score_map,
|
|
|
+ batch_restore_list):
|
|
|
+ label_maps = []
|
|
|
+ score_maps = []
|
|
|
+ for label_map, score_map, restore_list in zip(
|
|
|
+ batch_label_map, batch_score_map, batch_restore_list):
|
|
|
+ if not isinstance(label_map, np.ndarray):
|
|
|
+ label_map = paddle.unsqueeze(label_map, axis=[0, 3])
|
|
|
+ score_map = paddle.unsqueeze(score_map, axis=0)
|
|
|
+ for item in restore_list[::-1]:
|
|
|
+ h, w = item[1][0], item[1][1]
|
|
|
+ if item[0] == 'resize':
|
|
|
+ if isinstance(label_map, np.ndarray):
|
|
|
+ label_map = cv2.resize(
|
|
|
+ label_map, (w, h), interpolation=cv2.INTER_NEAREST)
|
|
|
+ score_map = cv2.resize(
|
|
|
+ score_map, (w, h), interpolation=cv2.INTER_LINEAR)
|
|
|
+ else:
|
|
|
+ label_map = F.interpolate(
|
|
|
+ label_map, (h, w),
|
|
|
+ mode='nearest',
|
|
|
+ data_format='NHWC')
|
|
|
+ score_map = F.interpolate(
|
|
|
+ score_map, (h, w),
|
|
|
+ mode='bilinear',
|
|
|
+ data_format='NHWC')
|
|
|
+ elif item[0] == 'padding':
|
|
|
+ x, y = item[2]
|
|
|
+ if isinstance(label_map, np.ndarray):
|
|
|
+ label_map = label_map[..., y:y + h, x:x + w]
|
|
|
+ score_map = score_map[..., y:y + h, x:x + w]
|
|
|
+ else:
|
|
|
+ label_map = label_map[:, :, y:y + h, x:x + w]
|
|
|
+ score_map = score_map[:, :, y:y + h, x:x + w]
|
|
|
+ else:
|
|
|
+ pass
|
|
|
+ label_map = label_map.squeeze()
|
|
|
+ score_map = score_map.squeeze()
|
|
|
+ if not isinstance(label_map, np.ndarray):
|
|
|
+ label_map = label_map.numpy()
|
|
|
+ score_map = score_map.numpy()
|
|
|
+ label_maps.append(label_map.squeeze())
|
|
|
+ score_maps.append(score_map.squeeze())
|
|
|
+ return label_maps, score_maps
|
|
|
+
|
|
|
+
|
|
|
+class CDNet(BaseChangeDetector):
|
|
|
+ def __init__(self,
|
|
|
+ num_classes=2,
|
|
|
+ use_mixed_loss=False,
|
|
|
+ in_channels=6,
|
|
|
+ **params):
|
|
|
+ params.update({'in_channels': in_channels})
|
|
|
+ super(CDNet, self).__init__(
|
|
|
+ model_name='UNet',
|
|
|
+ num_classes=num_classes,
|
|
|
+ use_mixed_loss=use_mixed_loss,
|
|
|
+ **params)
|