|
@@ -2,88 +2,206 @@ import paddle
|
|
|
import paddle.nn as nn
|
|
|
import paddle.nn.functional as F
|
|
|
import paddlers
|
|
|
-from paddlers.rs_models.cd import BIT
|
|
|
+from paddlers.rs_models.cd.layers import Conv3x3, MaxPool2x2, ConvTransposed3x3, Identity
|
|
|
+from paddlers.rs_models.cd.layers import ChannelAttention, SpatialAttention
|
|
|
+
|
|
|
from attach_tools import Attach
|
|
|
|
|
|
attach = Attach.to(paddlers.rs_models.cd)
|
|
|
|
|
|
|
|
|
@attach
|
|
|
-class IterativeBIT(BIT):
|
|
|
+class CustomModel(nn.Layer):
|
|
|
def __init__(self,
|
|
|
- num_iters=1,
|
|
|
- feat_channels=32,
|
|
|
- num_classes=2,
|
|
|
- bit_kwargs=None):
|
|
|
- if num_iters <= 0:
|
|
|
- raise ValueError(
|
|
|
- f"`num_iters` should have positive value, but got {num_iters}.")
|
|
|
-
|
|
|
- self.num_iters = num_iters
|
|
|
-
|
|
|
- if bit_kwargs is None:
|
|
|
- bit_kwargs = dict()
|
|
|
-
|
|
|
- if 'num_classes' in bit_kwargs:
|
|
|
- raise KeyError("'num_classes' should not be set in `bit_kwargs`.")
|
|
|
- bit_kwargs['num_classes'] = num_classes
|
|
|
-
|
|
|
- super().__init__(**bit_kwargs)
|
|
|
+ in_channels,
|
|
|
+ num_classes,
|
|
|
+ att_types='cst',
|
|
|
+ use_dropout=False):
|
|
|
+ super(CustomModel, self).__init__()
|
|
|
+
|
|
|
+ C1, C2, C3, C4, C5 = 16, 32, 64, 128, 256
|
|
|
+
|
|
|
+ self.use_dropout = use_dropout
|
|
|
+
|
|
|
+ self.conv11 = Conv3x3(in_channels, C1, norm=True, act=True)
|
|
|
+ self.do11 = self._make_dropout()
|
|
|
+ self.conv12 = Conv3x3(C1, C1, norm=True, act=True)
|
|
|
+ self.do12 = self._make_dropout()
|
|
|
+ self.pool1 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.conv21 = Conv3x3(C1, C2, norm=True, act=True)
|
|
|
+ self.do21 = self._make_dropout()
|
|
|
+ self.conv22 = Conv3x3(C2, C2, norm=True, act=True)
|
|
|
+ self.do22 = self._make_dropout()
|
|
|
+ self.pool2 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.conv31 = Conv3x3(C2, C3, norm=True, act=True)
|
|
|
+ self.do31 = self._make_dropout()
|
|
|
+ self.conv32 = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
+ self.do32 = self._make_dropout()
|
|
|
+ self.conv33 = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
+ self.do33 = self._make_dropout()
|
|
|
+ self.pool3 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.conv41 = Conv3x3(C3, C4, norm=True, act=True)
|
|
|
+ self.do41 = self._make_dropout()
|
|
|
+ self.conv42 = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
+ self.do42 = self._make_dropout()
|
|
|
+ self.conv43 = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
+ self.do43 = self._make_dropout()
|
|
|
+ self.pool4 = MaxPool2x2()
|
|
|
+
|
|
|
+ self.upconv4 = ConvTransposed3x3(C4, C4, output_padding=1)
|
|
|
+
|
|
|
+ self.conv43d = Conv3x3(C5, C4, norm=True, act=True)
|
|
|
+ self.do43d = self._make_dropout()
|
|
|
+ self.conv42d = Conv3x3(C4, C4, norm=True, act=True)
|
|
|
+ self.do42d = self._make_dropout()
|
|
|
+ self.conv41d = Conv3x3(C4, C3, norm=True, act=True)
|
|
|
+ self.do41d = self._make_dropout()
|
|
|
+
|
|
|
+ self.upconv3 = ConvTransposed3x3(C3, C3, output_padding=1)
|
|
|
+
|
|
|
+ self.conv33d = Conv3x3(C4, C3, norm=True, act=True)
|
|
|
+ self.do33d = self._make_dropout()
|
|
|
+ self.conv32d = Conv3x3(C3, C3, norm=True, act=True)
|
|
|
+ self.do32d = self._make_dropout()
|
|
|
+ self.conv31d = Conv3x3(C3, C2, norm=True, act=True)
|
|
|
+ self.do31d = self._make_dropout()
|
|
|
+
|
|
|
+ self.upconv2 = ConvTransposed3x3(C2, C2, output_padding=1)
|
|
|
+
|
|
|
+ self.conv22d = Conv3x3(C3, C2, norm=True, act=True)
|
|
|
+ self.do22d = self._make_dropout()
|
|
|
+ self.conv21d = Conv3x3(C2, C1, norm=True, act=True)
|
|
|
+ self.do21d = self._make_dropout()
|
|
|
+
|
|
|
+ self.upconv1 = ConvTransposed3x3(C1, C1, output_padding=1)
|
|
|
+
|
|
|
+ self.conv12d = Conv3x3(C2, C1, norm=True, act=True)
|
|
|
+ self.do12d = self._make_dropout()
|
|
|
+ self.conv11d = Conv3x3(C1, num_classes)
|
|
|
+
|
|
|
+ if 'c' in att_types:
|
|
|
+ self.att_c = ChannelAttention(C4)
|
|
|
+ else:
|
|
|
+ self.att_c = Identity()
|
|
|
+ if 's' in att_types:
|
|
|
+ self.att_s = SpatialAttention()
|
|
|
+ else:
|
|
|
+ self.att_s = Identity()
|
|
|
+ if 't' in att_types:
|
|
|
+ self.att_t = ChannelAttention(2, ratio=1)
|
|
|
+ else:
|
|
|
+ self.att_t = Identity()
|
|
|
|
|
|
- self.conv_fuse = nn.Sequential(
|
|
|
- nn.Conv2D(feat_channels + 1, feat_channels, 1), nn.Sigmoid())
|
|
|
+ self.init_weight()
|
|
|
|
|
|
def forward(self, t1, t2):
|
|
|
- # Extract features via shared backbone.
|
|
|
- x1 = self.backbone(t1)
|
|
|
- x2 = self.backbone(t2)
|
|
|
-
|
|
|
- # Tokenization
|
|
|
- if self.use_tokenizer:
|
|
|
- token1 = self._get_semantic_tokens(x1)
|
|
|
- token2 = self._get_semantic_tokens(x2)
|
|
|
+ # Encode t1
|
|
|
+ # Stage 1
|
|
|
+ x11 = self.do11(self.conv11(t1))
|
|
|
+ x12_1 = self.do12(self.conv12(x11))
|
|
|
+ x1p = self.pool1(x12_1)
|
|
|
+
|
|
|
+ # Stage 2
|
|
|
+ x21 = self.do21(self.conv21(x1p))
|
|
|
+ x22_1 = self.do22(self.conv22(x21))
|
|
|
+ x2p = self.pool2(x22_1)
|
|
|
+
|
|
|
+ # Stage 3
|
|
|
+ x31 = self.do31(self.conv31(x2p))
|
|
|
+ x32 = self.do32(self.conv32(x31))
|
|
|
+ x33_1 = self.do33(self.conv33(x32))
|
|
|
+ x3p = self.pool3(x33_1)
|
|
|
+
|
|
|
+ # Stage 4
|
|
|
+ x41 = self.do41(self.conv41(x3p))
|
|
|
+ x42 = self.do42(self.conv42(x41))
|
|
|
+ x43_1 = self.do43(self.conv43(x42))
|
|
|
+ x4p = self.pool4(x43_1)
|
|
|
+
|
|
|
+ # Encode t2
|
|
|
+ # Stage 1
|
|
|
+ x11 = self.do11(self.conv11(t2))
|
|
|
+ x12_2 = self.do12(self.conv12(x11))
|
|
|
+ x1p = self.pool1(x12_2)
|
|
|
+
|
|
|
+ # Stage 2
|
|
|
+ x21 = self.do21(self.conv21(x1p))
|
|
|
+ x22_2 = self.do22(self.conv22(x21))
|
|
|
+ x2p = self.pool2(x22_2)
|
|
|
+
|
|
|
+ # Stage 3
|
|
|
+ x31 = self.do31(self.conv31(x2p))
|
|
|
+ x32 = self.do32(self.conv32(x31))
|
|
|
+ x33_2 = self.do33(self.conv33(x32))
|
|
|
+ x3p = self.pool3(x33_2)
|
|
|
+
|
|
|
+ # Stage 4
|
|
|
+ x41 = self.do41(self.conv41(x3p))
|
|
|
+ x42 = self.do42(self.conv42(x41))
|
|
|
+ x43_2 = self.do43(self.conv43(x42))
|
|
|
+ x4p = self.pool4(x43_2)
|
|
|
+
|
|
|
+ # Attend
|
|
|
+ x43_1 = self.att_c(x43_1) * x43_1
|
|
|
+ x43_1 = self.att_s(x43_1) * x43_1
|
|
|
+ x43_2 = self.att_c(x43_2) * x43_2
|
|
|
+ x43_2 = self.att_s(x43_2) * x43_2
|
|
|
+ x43 = paddle.stack([x43_1, x43_2], axis=1)
|
|
|
+ x43 = paddle.transpose(x43, [0, 2, 1, 3, 4])
|
|
|
+ x43 = paddle.flatten(x43, stop_axis=1)
|
|
|
+ x43 = self.att_t(x43) * x43
|
|
|
+ x43 = x43.reshape((x43_1.shape[0], -1, 2, *x43.shape[2:]))
|
|
|
+ x43_1, x43_2 = x43[:, :, 0], x43[:, :, 1]
|
|
|
+
|
|
|
+ # Decode
|
|
|
+ # Stage 4d
|
|
|
+ x4d = self.upconv4(x4p)
|
|
|
+ pad4 = (0, x43_1.shape[3] - x4d.shape[3], 0,
|
|
|
+ x43_1.shape[2] - x4d.shape[2])
|
|
|
+ x4d = F.pad(x4d, pad=pad4, mode='replicate')
|
|
|
+ x4d = paddle.concat([x4d, paddle.abs(x43_1 - x43_2)], 1)
|
|
|
+ x43d = self.do43d(self.conv43d(x4d))
|
|
|
+ x42d = self.do42d(self.conv42d(x43d))
|
|
|
+ x41d = self.do41d(self.conv41d(x42d))
|
|
|
+
|
|
|
+ # Stage 3d
|
|
|
+ x3d = self.upconv3(x41d)
|
|
|
+ pad3 = (0, x33_1.shape[3] - x3d.shape[3], 0,
|
|
|
+ x33_1.shape[2] - x3d.shape[2])
|
|
|
+ x3d = F.pad(x3d, pad=pad3, mode='replicate')
|
|
|
+ x3d = paddle.concat([x3d, paddle.abs(x33_1 - x33_2)], 1)
|
|
|
+ x33d = self.do33d(self.conv33d(x3d))
|
|
|
+ x32d = self.do32d(self.conv32d(x33d))
|
|
|
+ x31d = self.do31d(self.conv31d(x32d))
|
|
|
+
|
|
|
+ # Stage 2d
|
|
|
+ x2d = self.upconv2(x31d)
|
|
|
+ pad2 = (0, x22_1.shape[3] - x2d.shape[3], 0,
|
|
|
+ x22_1.shape[2] - x2d.shape[2])
|
|
|
+ x2d = F.pad(x2d, pad=pad2, mode='replicate')
|
|
|
+ x2d = paddle.concat([x2d, paddle.abs(x22_1 - x22_2)], 1)
|
|
|
+ x22d = self.do22d(self.conv22d(x2d))
|
|
|
+ x21d = self.do21d(self.conv21d(x22d))
|
|
|
+
|
|
|
+ # Stage 1d
|
|
|
+ x1d = self.upconv1(x21d)
|
|
|
+ pad1 = (0, x12_1.shape[3] - x1d.shape[3], 0,
|
|
|
+ x12_1.shape[2] - x1d.shape[2])
|
|
|
+ x1d = F.pad(x1d, pad=pad1, mode='replicate')
|
|
|
+ x1d = paddle.concat([x1d, paddle.abs(x12_1 - x12_2)], 1)
|
|
|
+ x12d = self.do12d(self.conv12d(x1d))
|
|
|
+ x11d = self.conv11d(x12d)
|
|
|
+
|
|
|
+ return [x11d]
|
|
|
+
|
|
|
+ def init_weight(self):
|
|
|
+ pass
|
|
|
+
|
|
|
+ def _make_dropout(self):
|
|
|
+ if self.use_dropout:
|
|
|
+ return nn.Dropout2D(p=0.2)
|
|
|
else:
|
|
|
- token1 = self._get_reshaped_tokens(x1)
|
|
|
- token2 = self._get_reshaped_tokens(x2)
|
|
|
-
|
|
|
- # Transformer encoder forward
|
|
|
- token = paddle.concat([token1, token2], axis=1)
|
|
|
- token = self.encode(token)
|
|
|
- token1, token2 = paddle.chunk(token, 2, axis=1)
|
|
|
-
|
|
|
- # Get initial rate map
|
|
|
- rate_map = self._init_rate_map(x1.shape)
|
|
|
-
|
|
|
- for it in range(self.num_iters):
|
|
|
- # Construct inputs
|
|
|
- x1_iter = self._constr_iter_input(x1, rate_map)
|
|
|
- x2_iter = self._constr_iter_input(x2, rate_map)
|
|
|
-
|
|
|
- # Transformer decoder forward
|
|
|
- y1 = self.decode(x1_iter, token1)
|
|
|
- y2 = self.decode(x2_iter, token2)
|
|
|
-
|
|
|
- # Feature differencing
|
|
|
- y = paddle.abs(y1 - y2)
|
|
|
-
|
|
|
- # Construct rate map
|
|
|
- rate_map = self._constr_rate_map(y)
|
|
|
-
|
|
|
- y = self.upsample(y)
|
|
|
- pred = self.conv_out(y)
|
|
|
-
|
|
|
- return [pred]
|
|
|
-
|
|
|
- def _init_rate_map(self, im_shape):
|
|
|
- b, _, h, w = im_shape
|
|
|
- return paddle.full((b, 1, h, w), 0.5)
|
|
|
-
|
|
|
- def _constr_iter_input(self, x, rate_map):
|
|
|
- return self.conv_fuse(paddle.concat([x, rate_map], axis=1))
|
|
|
-
|
|
|
- def _constr_rate_map(self, x):
|
|
|
- rate_map = x.mean(1, keepdim=True).detach() # Cut off gradient workflow
|
|
|
- # min-max normalization
|
|
|
- rate_map -= rate_map.min()
|
|
|
- rate_map /= rate_map.max()
|
|
|
- return rate_map
|
|
|
+ return Identity()
|