orchestrator_rule_parser.py 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343
  1. from typing import Optional
  2. from langchain import WikipediaAPIWrapper
  3. from langchain.callbacks.manager import Callbacks
  4. from langchain.memory.chat_memory import BaseChatMemory
  5. from langchain.tools import BaseTool, Tool, WikipediaQueryRun
  6. from pydantic import BaseModel, Field
  7. from core.agent.agent_executor import AgentExecutor, PlanningStrategy, AgentConfiguration
  8. from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
  9. from core.callback_handler.dataset_tool_callback_handler import DatasetToolCallbackHandler
  10. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  11. from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
  12. from core.chain.sensitive_word_avoidance_chain import SensitiveWordAvoidanceChain, SensitiveWordAvoidanceRule
  13. from core.conversation_message_task import ConversationMessageTask
  14. from core.model_providers.error import ProviderTokenNotInitError
  15. from core.model_providers.model_factory import ModelFactory
  16. from core.model_providers.models.entity.model_params import ModelKwargs, ModelMode
  17. from core.model_providers.models.llm.base import BaseLLM
  18. from core.tool.current_datetime_tool import DatetimeTool
  19. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  20. from core.tool.provider.serpapi_provider import SerpAPIToolProvider
  21. from core.tool.serpapi_wrapper import OptimizedSerpAPIWrapper, OptimizedSerpAPIInput
  22. from core.tool.web_reader_tool import WebReaderTool
  23. from extensions.ext_database import db
  24. from models.dataset import Dataset, DatasetProcessRule
  25. from models.model import AppModelConfig
  26. class OrchestratorRuleParser:
  27. """Parse the orchestrator rule to entities."""
  28. def __init__(self, tenant_id: str, app_model_config: AppModelConfig):
  29. self.tenant_id = tenant_id
  30. self.app_model_config = app_model_config
  31. def to_agent_executor(self, conversation_message_task: ConversationMessageTask, memory: Optional[BaseChatMemory],
  32. rest_tokens: int, chain_callback: MainChainGatherCallbackHandler,
  33. retriever_from: str = 'dev') -> Optional[AgentExecutor]:
  34. if not self.app_model_config.agent_mode_dict:
  35. return None
  36. agent_mode_config = self.app_model_config.agent_mode_dict
  37. model_dict = self.app_model_config.model_dict
  38. return_resource = self.app_model_config.retriever_resource_dict.get('enabled', False)
  39. chain = None
  40. if agent_mode_config and agent_mode_config.get('enabled'):
  41. tool_configs = agent_mode_config.get('tools', [])
  42. agent_provider_name = model_dict.get('provider', 'openai')
  43. agent_model_name = model_dict.get('name', 'gpt-4')
  44. dataset_configs = self.app_model_config.dataset_configs_dict
  45. agent_model_instance = ModelFactory.get_text_generation_model(
  46. tenant_id=self.tenant_id,
  47. model_provider_name=agent_provider_name,
  48. model_name=agent_model_name,
  49. model_kwargs=ModelKwargs(
  50. temperature=0.2,
  51. top_p=0.3,
  52. max_tokens=1500
  53. )
  54. )
  55. # add agent callback to record agent thoughts
  56. agent_callback = AgentLoopGatherCallbackHandler(
  57. model_instance=agent_model_instance,
  58. conversation_message_task=conversation_message_task
  59. )
  60. chain_callback.agent_callback = agent_callback
  61. agent_model_instance.add_callbacks([agent_callback])
  62. planning_strategy = PlanningStrategy(agent_mode_config.get('strategy', 'router'))
  63. # only OpenAI chat model (include Azure) support function call, use ReACT instead
  64. if agent_model_instance.model_mode != ModelMode.CHAT \
  65. or agent_model_instance.model_provider.provider_name not in ['openai', 'azure_openai']:
  66. if planning_strategy == PlanningStrategy.FUNCTION_CALL:
  67. planning_strategy = PlanningStrategy.REACT
  68. elif planning_strategy == PlanningStrategy.ROUTER:
  69. planning_strategy = PlanningStrategy.REACT_ROUTER
  70. try:
  71. summary_model_instance = ModelFactory.get_text_generation_model(
  72. tenant_id=self.tenant_id,
  73. model_provider_name=agent_provider_name,
  74. model_name=agent_model_name,
  75. model_kwargs=ModelKwargs(
  76. temperature=0,
  77. max_tokens=500
  78. ),
  79. deduct_quota=False
  80. )
  81. except ProviderTokenNotInitError as e:
  82. summary_model_instance = None
  83. tools = self.to_tools(
  84. tool_configs=tool_configs,
  85. callbacks=[agent_callback, DifyStdOutCallbackHandler()],
  86. agent_model_instance=agent_model_instance,
  87. conversation_message_task=conversation_message_task,
  88. rest_tokens=rest_tokens,
  89. return_resource=return_resource,
  90. retriever_from=retriever_from,
  91. dataset_configs=dataset_configs
  92. )
  93. if len(tools) == 0:
  94. return None
  95. agent_configuration = AgentConfiguration(
  96. strategy=planning_strategy,
  97. model_instance=agent_model_instance,
  98. tools=tools,
  99. summary_model_instance=summary_model_instance,
  100. memory=memory,
  101. callbacks=[chain_callback, agent_callback],
  102. max_iterations=10,
  103. max_execution_time=400.0,
  104. early_stopping_method="generate"
  105. )
  106. return AgentExecutor(agent_configuration)
  107. return chain
  108. def to_sensitive_word_avoidance_chain(self, model_instance: BaseLLM, callbacks: Callbacks = None, **kwargs) \
  109. -> Optional[SensitiveWordAvoidanceChain]:
  110. """
  111. Convert app sensitive word avoidance config to chain
  112. :param model_instance: model instance
  113. :param callbacks: callbacks for the chain
  114. :param kwargs:
  115. :return:
  116. """
  117. sensitive_word_avoidance_rule = None
  118. if self.app_model_config.sensitive_word_avoidance_dict:
  119. sensitive_word_avoidance_config = self.app_model_config.sensitive_word_avoidance_dict
  120. if sensitive_word_avoidance_config.get("enabled", False):
  121. if sensitive_word_avoidance_config.get('type') == 'moderation':
  122. sensitive_word_avoidance_rule = SensitiveWordAvoidanceRule(
  123. type=SensitiveWordAvoidanceRule.Type.MODERATION,
  124. canned_response=sensitive_word_avoidance_config.get("canned_response")
  125. if sensitive_word_avoidance_config.get("canned_response")
  126. else 'Your content violates our usage policy. Please revise and try again.',
  127. )
  128. else:
  129. sensitive_words = sensitive_word_avoidance_config.get("words", "")
  130. if sensitive_words:
  131. sensitive_word_avoidance_rule = SensitiveWordAvoidanceRule(
  132. type=SensitiveWordAvoidanceRule.Type.KEYWORDS,
  133. canned_response=sensitive_word_avoidance_config.get("canned_response")
  134. if sensitive_word_avoidance_config.get("canned_response")
  135. else 'Your content violates our usage policy. Please revise and try again.',
  136. extra_params={
  137. 'sensitive_words': sensitive_words.split(','),
  138. }
  139. )
  140. if sensitive_word_avoidance_rule:
  141. return SensitiveWordAvoidanceChain(
  142. model_instance=model_instance,
  143. sensitive_word_avoidance_rule=sensitive_word_avoidance_rule,
  144. output_key="sensitive_word_avoidance_output",
  145. callbacks=callbacks,
  146. **kwargs
  147. )
  148. return None
  149. def to_tools(self, tool_configs: list, callbacks: Callbacks = None, **kwargs) -> list[BaseTool]:
  150. """
  151. Convert app agent tool configs to tools
  152. :param tool_configs: app agent tool configs
  153. :param callbacks:
  154. :return:
  155. """
  156. tools = []
  157. for tool_config in tool_configs:
  158. tool_type = list(tool_config.keys())[0]
  159. tool_val = list(tool_config.values())[0]
  160. if not tool_val.get("enabled") or tool_val.get("enabled") is not True:
  161. continue
  162. tool = None
  163. if tool_type == "dataset":
  164. tool = self.to_dataset_retriever_tool(tool_config=tool_val, **kwargs)
  165. elif tool_type == "web_reader":
  166. tool = self.to_web_reader_tool(tool_config=tool_val, **kwargs)
  167. elif tool_type == "google_search":
  168. tool = self.to_google_search_tool(tool_config=tool_val, **kwargs)
  169. elif tool_type == "wikipedia":
  170. tool = self.to_wikipedia_tool(tool_config=tool_val, **kwargs)
  171. elif tool_type == "current_datetime":
  172. tool = self.to_current_datetime_tool(tool_config=tool_val, **kwargs)
  173. if tool:
  174. if tool.callbacks is not None:
  175. tool.callbacks.extend(callbacks)
  176. else:
  177. tool.callbacks = callbacks
  178. tools.append(tool)
  179. return tools
  180. def to_dataset_retriever_tool(self, tool_config: dict, conversation_message_task: ConversationMessageTask,
  181. dataset_configs: dict, rest_tokens: int,
  182. return_resource: bool = False, retriever_from: str = 'dev',
  183. **kwargs) \
  184. -> Optional[BaseTool]:
  185. """
  186. A dataset tool is a tool that can be used to retrieve information from a dataset
  187. :param rest_tokens:
  188. :param tool_config:
  189. :param dataset_configs:
  190. :param conversation_message_task:
  191. :param return_resource:
  192. :param retriever_from:
  193. :return:
  194. """
  195. # get dataset from dataset id
  196. dataset = db.session.query(Dataset).filter(
  197. Dataset.tenant_id == self.tenant_id,
  198. Dataset.id == tool_config.get("id")
  199. ).first()
  200. if not dataset:
  201. return None
  202. if dataset and dataset.available_document_count == 0 and dataset.available_document_count == 0:
  203. return None
  204. top_k = dataset_configs.get("top_k", 2)
  205. # dynamically adjust top_k when the remaining token number is not enough to support top_k
  206. top_k = self._dynamic_calc_retrieve_k(dataset=dataset, top_k=top_k, rest_tokens=rest_tokens)
  207. score_threshold = None
  208. score_threshold_config = dataset_configs.get("score_threshold")
  209. if score_threshold_config and score_threshold_config.get("enable"):
  210. score_threshold = score_threshold_config.get("value")
  211. tool = DatasetRetrieverTool.from_dataset(
  212. dataset=dataset,
  213. top_k=top_k,
  214. score_threshold=score_threshold,
  215. callbacks=[DatasetToolCallbackHandler(conversation_message_task)],
  216. conversation_message_task=conversation_message_task,
  217. return_resource=return_resource,
  218. retriever_from=retriever_from
  219. )
  220. return tool
  221. def to_web_reader_tool(self, tool_config: dict, agent_model_instance: BaseLLM, **kwargs) -> Optional[BaseTool]:
  222. """
  223. A tool for reading web pages
  224. :return:
  225. """
  226. try:
  227. summary_model_instance = ModelFactory.get_text_generation_model(
  228. tenant_id=self.tenant_id,
  229. model_provider_name=agent_model_instance.model_provider.provider_name,
  230. model_name=agent_model_instance.name,
  231. model_kwargs=ModelKwargs(
  232. temperature=0,
  233. max_tokens=500
  234. ),
  235. deduct_quota=False
  236. )
  237. except ProviderTokenNotInitError:
  238. summary_model_instance = None
  239. tool = WebReaderTool(
  240. model_instance=summary_model_instance if summary_model_instance else None,
  241. max_chunk_length=4000,
  242. continue_reading=True
  243. )
  244. return tool
  245. def to_google_search_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
  246. tool_provider = SerpAPIToolProvider(tenant_id=self.tenant_id)
  247. func_kwargs = tool_provider.credentials_to_func_kwargs()
  248. if not func_kwargs:
  249. return None
  250. tool = Tool(
  251. name="google_search",
  252. description="A tool for performing a Google search and extracting snippets and webpages "
  253. "when you need to search for something you don't know or when your information "
  254. "is not up to date. "
  255. "Input should be a search query.",
  256. func=OptimizedSerpAPIWrapper(**func_kwargs).run,
  257. args_schema=OptimizedSerpAPIInput
  258. )
  259. return tool
  260. def to_current_datetime_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
  261. tool = DatetimeTool()
  262. return tool
  263. def to_wikipedia_tool(self, tool_config: dict, **kwargs) -> Optional[BaseTool]:
  264. class WikipediaInput(BaseModel):
  265. query: str = Field(..., description="search query.")
  266. return WikipediaQueryRun(
  267. name="wikipedia",
  268. api_wrapper=WikipediaAPIWrapper(doc_content_chars_max=4000),
  269. args_schema=WikipediaInput
  270. )
  271. @classmethod
  272. def _dynamic_calc_retrieve_k(cls, dataset: Dataset, top_k: int, rest_tokens: int) -> int:
  273. if rest_tokens == -1:
  274. return top_k
  275. processing_rule = dataset.latest_process_rule
  276. if not processing_rule:
  277. return top_k
  278. if processing_rule.mode == "custom":
  279. rules = processing_rule.rules_dict
  280. if not rules:
  281. return top_k
  282. segmentation = rules["segmentation"]
  283. segment_max_tokens = segmentation["max_tokens"]
  284. else:
  285. segment_max_tokens = DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens']
  286. # when rest_tokens is less than default context tokens
  287. if rest_tokens < segment_max_tokens * top_k:
  288. return rest_tokens // segment_max_tokens
  289. return min(top_k, 10)