| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711 | import datetimeimport jsonimport loggingimport randomimport timeimport uuidfrom typing import Optionalfrom flask_login import current_userfrom sqlalchemy import funcfrom werkzeug.exceptions import NotFoundfrom configs import dify_configfrom core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.rag.datasource.keyword.keyword_factory import Keywordfrom core.rag.models.document import Document as RAGDocumentfrom core.rag.retrieval.retrieval_methods import RetrievalMethodfrom events.dataset_event import dataset_was_deletedfrom events.document_event import document_was_deletedfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom libs import helperfrom models.account import Account, TenantAccountRolefrom models.dataset import (    AppDatasetJoin,    Dataset,    DatasetCollectionBinding,    DatasetPermission,    DatasetPermissionEnum,    DatasetProcessRule,    DatasetQuery,    Document,    DocumentSegment,    ExternalKnowledgeBindings,)from models.model import UploadFilefrom models.source import DataSourceOauthBindingfrom services.errors.account import NoPermissionErrorfrom services.errors.dataset import DatasetNameDuplicateErrorfrom services.errors.document import DocumentIndexingErrorfrom services.errors.file import FileNotExistsErrorfrom services.external_knowledge_service import ExternalDatasetServicefrom services.feature_service import FeatureModel, FeatureServicefrom services.tag_service import TagServicefrom services.vector_service import VectorServicefrom tasks.clean_notion_document_task import clean_notion_document_taskfrom tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_taskfrom tasks.delete_segment_from_index_task import delete_segment_from_index_taskfrom tasks.disable_segment_from_index_task import disable_segment_from_index_taskfrom tasks.document_indexing_task import document_indexing_taskfrom tasks.document_indexing_update_task import document_indexing_update_taskfrom tasks.duplicate_document_indexing_task import duplicate_document_indexing_taskfrom tasks.recover_document_indexing_task import recover_document_indexing_taskfrom tasks.retry_document_indexing_task import retry_document_indexing_taskfrom tasks.sync_website_document_indexing_task import sync_website_document_indexing_taskclass DatasetService:    @staticmethod    def get_datasets(page, per_page, tenant_id=None, user=None, search=None, tag_ids=None):        query = Dataset.query.filter(Dataset.tenant_id == tenant_id).order_by(Dataset.created_at.desc())        if user:            # get permitted dataset ids            dataset_permission = DatasetPermission.query.filter_by(account_id=user.id, tenant_id=tenant_id).all()            permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None            if user.current_role == TenantAccountRole.DATASET_OPERATOR:                # only show datasets that the user has permission to access                if permitted_dataset_ids:                    query = query.filter(Dataset.id.in_(permitted_dataset_ids))                else:                    return [], 0            else:                # show all datasets that the user has permission to access                if permitted_dataset_ids:                    query = query.filter(                        db.or_(                            Dataset.permission == DatasetPermissionEnum.ALL_TEAM,                            db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),                            db.and_(                                Dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM,                                Dataset.id.in_(permitted_dataset_ids),                            ),                        )                    )                else:                    query = query.filter(                        db.or_(                            Dataset.permission == DatasetPermissionEnum.ALL_TEAM,                            db.and_(Dataset.permission == DatasetPermissionEnum.ONLY_ME, Dataset.created_by == user.id),                        )                    )        else:            # if no user, only show datasets that are shared with all team members            query = query.filter(Dataset.permission == DatasetPermissionEnum.ALL_TEAM)        if search:            query = query.filter(Dataset.name.ilike(f"%{search}%"))        if tag_ids:            target_ids = TagService.get_target_ids_by_tag_ids("knowledge", tenant_id, tag_ids)            if target_ids:                query = query.filter(Dataset.id.in_(target_ids))            else:                return [], 0        datasets = query.paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)        return datasets.items, datasets.total    @staticmethod    def get_process_rules(dataset_id):        # get the latest process rule        dataset_process_rule = (            db.session.query(DatasetProcessRule)            .filter(DatasetProcessRule.dataset_id == dataset_id)            .order_by(DatasetProcessRule.created_at.desc())            .limit(1)            .one_or_none()        )        if dataset_process_rule:            mode = dataset_process_rule.mode            rules = dataset_process_rule.rules_dict        else:            mode = DocumentService.DEFAULT_RULES["mode"]            rules = DocumentService.DEFAULT_RULES["rules"]        return {"mode": mode, "rules": rules}    @staticmethod    def get_datasets_by_ids(ids, tenant_id):        datasets = Dataset.query.filter(Dataset.id.in_(ids), Dataset.tenant_id == tenant_id).paginate(            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False        )        return datasets.items, datasets.total    @staticmethod    def create_empty_dataset(        tenant_id: str,        name: str,        indexing_technique: Optional[str],        account: Account,        permission: Optional[str] = None,        provider: str = "vendor",        external_knowledge_api_id: Optional[str] = None,        external_knowledge_id: Optional[str] = None,    ):        # check if dataset name already exists        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():            raise DatasetNameDuplicateError(f"Dataset with name {name} already exists.")        embedding_model = None        if indexing_technique == "high_quality":            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=tenant_id, model_type=ModelType.TEXT_EMBEDDING            )        dataset = Dataset(name=name, indexing_technique=indexing_technique)        # dataset = Dataset(name=name, provider=provider, config=config)        dataset.created_by = account.id        dataset.updated_by = account.id        dataset.tenant_id = tenant_id        dataset.embedding_model_provider = embedding_model.provider if embedding_model else None        dataset.embedding_model = embedding_model.model if embedding_model else None        dataset.permission = permission or DatasetPermissionEnum.ONLY_ME        dataset.provider = provider        db.session.add(dataset)        db.session.flush()        if provider == "external" and external_knowledge_api_id:            external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)            if not external_knowledge_api:                raise ValueError("External API template not found.")            external_knowledge_binding = ExternalKnowledgeBindings(                tenant_id=tenant_id,                dataset_id=dataset.id,                external_knowledge_api_id=external_knowledge_api_id,                external_knowledge_id=external_knowledge_id,                created_by=account.id,            )            db.session.add(external_knowledge_binding)        db.session.commit()        return dataset    @staticmethod    def get_dataset(dataset_id) -> Dataset:        return Dataset.query.filter_by(id=dataset_id).first()    @staticmethod    def check_dataset_model_setting(dataset):        if dataset.indexing_technique == "high_quality":            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=dataset.tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            except LLMBadRequestError:                raise ValueError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider."                )            except ProviderTokenNotInitError as ex:                raise ValueError(f"The dataset in unavailable, due to: {ex.description}")    @staticmethod    def check_embedding_model_setting(tenant_id: str, embedding_model_provider: str, embedding_model: str):        try:            model_manager = ModelManager()            model_manager.get_model_instance(                tenant_id=tenant_id,                provider=embedding_model_provider,                model_type=ModelType.TEXT_EMBEDDING,                model=embedding_model,            )        except LLMBadRequestError:            raise ValueError(                "No Embedding Model available. Please configure a valid provider in the Settings -> Model Provider."            )        except ProviderTokenNotInitError as ex:            raise ValueError(f"The dataset in unavailable, due to: {ex.description}")    @staticmethod    def update_dataset(dataset_id, data, user):        dataset = DatasetService.get_dataset(dataset_id)        DatasetService.check_dataset_permission(dataset, user)        if dataset.provider == "external":            dataset.retrieval_model = data.get("external_retrieval_model", None)            dataset.name = data.get("name", dataset.name)            dataset.description = data.get("description", "")            external_knowledge_id = data.get("external_knowledge_id", None)            dataset.permission = data.get("permission")            db.session.add(dataset)            if not external_knowledge_id:                raise ValueError("External knowledge id is required.")            external_knowledge_api_id = data.get("external_knowledge_api_id", None)            if not external_knowledge_api_id:                raise ValueError("External knowledge api id is required.")            external_knowledge_binding = ExternalKnowledgeBindings.query.filter_by(dataset_id=dataset_id).first()            if (                external_knowledge_binding.external_knowledge_id != external_knowledge_id                or external_knowledge_binding.external_knowledge_api_id != external_knowledge_api_id            ):                external_knowledge_binding.external_knowledge_id = external_knowledge_id                external_knowledge_binding.external_knowledge_api_id = external_knowledge_api_id                db.session.add(external_knowledge_binding)            db.session.commit()        else:            data.pop("partial_member_list", None)            data.pop("external_knowledge_api_id", None)            data.pop("external_knowledge_id", None)            data.pop("external_retrieval_model", None)            filtered_data = {k: v for k, v in data.items() if v is not None or k == "description"}            action = None            if dataset.indexing_technique != data["indexing_technique"]:                # if update indexing_technique                if data["indexing_technique"] == "economy":                    action = "remove"                    filtered_data["embedding_model"] = None                    filtered_data["embedding_model_provider"] = None                    filtered_data["collection_binding_id"] = None                elif data["indexing_technique"] == "high_quality":                    action = "add"                    # get embedding model setting                    try:                        model_manager = ModelManager()                        embedding_model = model_manager.get_model_instance(                            tenant_id=current_user.current_tenant_id,                            provider=data["embedding_model_provider"],                            model_type=ModelType.TEXT_EMBEDDING,                            model=data["embedding_model"],                        )                        filtered_data["embedding_model"] = embedding_model.model                        filtered_data["embedding_model_provider"] = embedding_model.provider                        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                            embedding_model.provider, embedding_model.model                        )                        filtered_data["collection_binding_id"] = dataset_collection_binding.id                    except LLMBadRequestError:                        raise ValueError(                            "No Embedding Model available. Please configure a valid provider "                            "in the Settings -> Model Provider."                        )                    except ProviderTokenNotInitError as ex:                        raise ValueError(ex.description)            else:                if (                    data["embedding_model_provider"] != dataset.embedding_model_provider                    or data["embedding_model"] != dataset.embedding_model                ):                    action = "update"                    try:                        model_manager = ModelManager()                        embedding_model = model_manager.get_model_instance(                            tenant_id=current_user.current_tenant_id,                            provider=data["embedding_model_provider"],                            model_type=ModelType.TEXT_EMBEDDING,                            model=data["embedding_model"],                        )                        filtered_data["embedding_model"] = embedding_model.model                        filtered_data["embedding_model_provider"] = embedding_model.provider                        dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                            embedding_model.provider, embedding_model.model                        )                        filtered_data["collection_binding_id"] = dataset_collection_binding.id                    except LLMBadRequestError:                        raise ValueError(                            "No Embedding Model available. Please configure a valid provider "                            "in the Settings -> Model Provider."                        )                    except ProviderTokenNotInitError as ex:                        raise ValueError(ex.description)            filtered_data["updated_by"] = user.id            filtered_data["updated_at"] = datetime.datetime.now()            # update Retrieval model            filtered_data["retrieval_model"] = data["retrieval_model"]            dataset.query.filter_by(id=dataset_id).update(filtered_data)            db.session.commit()            if action:                deal_dataset_vector_index_task.delay(dataset_id, action)        return dataset    @staticmethod    def delete_dataset(dataset_id, user):        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            return False        DatasetService.check_dataset_permission(dataset, user)        dataset_was_deleted.send(dataset)        db.session.delete(dataset)        db.session.commit()        return True    @staticmethod    def dataset_use_check(dataset_id) -> bool:        count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()        if count > 0:            return True        return False    @staticmethod    def check_dataset_permission(dataset, user):        if dataset.tenant_id != user.current_tenant_id:            logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")            raise NoPermissionError("You do not have permission to access this dataset.")        if dataset.permission == DatasetPermissionEnum.ONLY_ME and dataset.created_by != user.id:            logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")            raise NoPermissionError("You do not have permission to access this dataset.")        if dataset.permission == "partial_members":            user_permission = DatasetPermission.query.filter_by(dataset_id=dataset.id, account_id=user.id).first()            if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:                logging.debug(f"User {user.id} does not have permission to access dataset {dataset.id}")                raise NoPermissionError("You do not have permission to access this dataset.")    @staticmethod    def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):        if dataset.permission == DatasetPermissionEnum.ONLY_ME:            if dataset.created_by != user.id:                raise NoPermissionError("You do not have permission to access this dataset.")        elif dataset.permission == DatasetPermissionEnum.PARTIAL_TEAM:            if not any(                dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()            ):                raise NoPermissionError("You do not have permission to access this dataset.")    @staticmethod    def get_dataset_queries(dataset_id: str, page: int, per_page: int):        dataset_queries = (            DatasetQuery.query.filter_by(dataset_id=dataset_id)            .order_by(db.desc(DatasetQuery.created_at))            .paginate(page=page, per_page=per_page, max_per_page=100, error_out=False)        )        return dataset_queries.items, dataset_queries.total    @staticmethod    def get_related_apps(dataset_id: str):        return (            AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id)            .order_by(db.desc(AppDatasetJoin.created_at))            .all()        )class DocumentService:    DEFAULT_RULES = {        "mode": "custom",        "rules": {            "pre_processing_rules": [                {"id": "remove_extra_spaces", "enabled": True},                {"id": "remove_urls_emails", "enabled": False},            ],            "segmentation": {"delimiter": "\n", "max_tokens": 500, "chunk_overlap": 50},        },    }    DOCUMENT_METADATA_SCHEMA = {        "book": {            "title": str,            "language": str,            "author": str,            "publisher": str,            "publication_date": str,            "isbn": str,            "category": str,        },        "web_page": {            "title": str,            "url": str,            "language": str,            "publish_date": str,            "author/publisher": str,            "topic/keywords": str,            "description": str,        },        "paper": {            "title": str,            "language": str,            "author": str,            "publish_date": str,            "journal/conference_name": str,            "volume/issue/page_numbers": str,            "doi": str,            "topic/keywords": str,            "abstract": str,        },        "social_media_post": {            "platform": str,            "author/username": str,            "publish_date": str,            "post_url": str,            "topic/tags": str,        },        "wikipedia_entry": {            "title": str,            "language": str,            "web_page_url": str,            "last_edit_date": str,            "editor/contributor": str,            "summary/introduction": str,        },        "personal_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "tags/category": str,        },        "business_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "department/team": str,        },        "im_chat_log": {            "chat_platform": str,            "chat_participants/group_name": str,            "start_date": str,            "end_date": str,            "summary": str,        },        "synced_from_notion": {            "title": str,            "language": str,            "author/creator": str,            "creation_date": str,            "last_modified_date": str,            "notion_page_link": str,            "category/tags": str,            "description": str,        },        "synced_from_github": {            "repository_name": str,            "repository_description": str,            "repository_owner/organization": str,            "code_filename": str,            "code_file_path": str,            "programming_language": str,            "github_link": str,            "open_source_license": str,            "commit_date": str,            "commit_author": str,        },        "others": dict,    }    @staticmethod    def get_document(dataset_id: str, document_id: str) -> Optional[Document]:        document = (            db.session.query(Document).filter(Document.id == document_id, Document.dataset_id == dataset_id).first()        )        return document    @staticmethod    def get_document_by_id(document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(Document.id == document_id).first()        return document    @staticmethod    def get_document_by_dataset_id(dataset_id: str) -> list[Document]:        documents = db.session.query(Document).filter(Document.dataset_id == dataset_id, Document.enabled == True).all()        return documents    @staticmethod    def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:        documents = (            db.session.query(Document)            .filter(Document.dataset_id == dataset_id, Document.indexing_status.in_(["error", "paused"]))            .all()        )        return documents    @staticmethod    def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:        documents = (            db.session.query(Document)            .filter(                Document.batch == batch,                Document.dataset_id == dataset_id,                Document.tenant_id == current_user.current_tenant_id,            )            .all()        )        return documents    @staticmethod    def get_document_file_detail(file_id: str):        file_detail = db.session.query(UploadFile).filter(UploadFile.id == file_id).one_or_none()        return file_detail    @staticmethod    def check_archived(document):        if document.archived:            return True        else:            return False    @staticmethod    def delete_document(document):        # trigger document_was_deleted signal        file_id = None        if document.data_source_type == "upload_file":            if document.data_source_info:                data_source_info = document.data_source_info_dict                if data_source_info and "upload_file_id" in data_source_info:                    file_id = data_source_info["upload_file_id"]        document_was_deleted.send(            document.id, dataset_id=document.dataset_id, doc_form=document.doc_form, file_id=file_id        )        db.session.delete(document)        db.session.commit()    @staticmethod    def rename_document(dataset_id: str, document_id: str, name: str) -> Document:        dataset = DatasetService.get_dataset(dataset_id)        if not dataset:            raise ValueError("Dataset not found.")        document = DocumentService.get_document(dataset_id, document_id)        if not document:            raise ValueError("Document not found.")        if document.tenant_id != current_user.current_tenant_id:            raise ValueError("No permission.")        document.name = name        db.session.add(document)        db.session.commit()        return document    @staticmethod    def pause_document(document):        if document.indexing_status not in {"waiting", "parsing", "cleaning", "splitting", "indexing"}:            raise DocumentIndexingError()        # update document to be paused        document.is_paused = True        document.paused_by = current_user.id        document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        db.session.add(document)        db.session.commit()        # set document paused flag        indexing_cache_key = "document_{}_is_paused".format(document.id)        redis_client.setnx(indexing_cache_key, "True")    @staticmethod    def recover_document(document):        if not document.is_paused:            raise DocumentIndexingError()        # update document to be recover        document.is_paused = False        document.paused_by = None        document.paused_at = None        db.session.add(document)        db.session.commit()        # delete paused flag        indexing_cache_key = "document_{}_is_paused".format(document.id)        redis_client.delete(indexing_cache_key)        # trigger async task        recover_document_indexing_task.delay(document.dataset_id, document.id)    @staticmethod    def retry_document(dataset_id: str, documents: list[Document]):        for document in documents:            # add retry flag            retry_indexing_cache_key = "document_{}_is_retried".format(document.id)            cache_result = redis_client.get(retry_indexing_cache_key)            if cache_result is not None:                raise ValueError("Document is being retried, please try again later")            # retry document indexing            document.indexing_status = "waiting"            db.session.add(document)            db.session.commit()            redis_client.setex(retry_indexing_cache_key, 600, 1)        # trigger async task        document_ids = [document.id for document in documents]        retry_document_indexing_task.delay(dataset_id, document_ids)    @staticmethod    def sync_website_document(dataset_id: str, document: Document):        # add sync flag        sync_indexing_cache_key = "document_{}_is_sync".format(document.id)        cache_result = redis_client.get(sync_indexing_cache_key)        if cache_result is not None:            raise ValueError("Document is being synced, please try again later")        # sync document indexing        document.indexing_status = "waiting"        data_source_info = document.data_source_info_dict        data_source_info["mode"] = "scrape"        document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)        db.session.add(document)        db.session.commit()        redis_client.setex(sync_indexing_cache_key, 600, 1)        sync_website_document_indexing_task.delay(dataset_id, document.id)    @staticmethod    def get_documents_position(dataset_id):        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()        if document:            return document.position + 1        else:            return 1    @staticmethod    def save_document_with_dataset_id(        dataset: Dataset,        document_data: dict,        account: Account,        dataset_process_rule: Optional[DatasetProcessRule] = None,        created_from: str = "web",    ):        # check document limit        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            if "original_document_id" not in document_data or not document_data["original_document_id"]:                count = 0                if document_data["data_source"]["type"] == "upload_file":                    upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]                    count = len(upload_file_list)                elif document_data["data_source"]["type"] == "notion_import":                    notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]                    for notion_info in notion_info_list:                        count = count + len(notion_info["pages"])                elif document_data["data_source"]["type"] == "website_crawl":                    website_info = document_data["data_source"]["info_list"]["website_info_list"]                    count = len(website_info["urls"])                batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)                if count > batch_upload_limit:                    raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")                DocumentService.check_documents_upload_quota(count, features)        # if dataset is empty, update dataset data_source_type        if not dataset.data_source_type:            dataset.data_source_type = document_data["data_source"]["type"]        if not dataset.indexing_technique:            if (                "indexing_technique" not in document_data                or document_data["indexing_technique"] not in Dataset.INDEXING_TECHNIQUE_LIST            ):                raise ValueError("Indexing technique is required")            dataset.indexing_technique = document_data["indexing_technique"]            if document_data["indexing_technique"] == "high_quality":                model_manager = ModelManager()                embedding_model = model_manager.get_default_model_instance(                    tenant_id=current_user.current_tenant_id, model_type=ModelType.TEXT_EMBEDDING                )                dataset.embedding_model = embedding_model.model                dataset.embedding_model_provider = embedding_model.provider                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                    embedding_model.provider, embedding_model.model                )                dataset.collection_binding_id = dataset_collection_binding.id                if not dataset.retrieval_model:                    default_retrieval_model = {                        "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,                        "reranking_enable": False,                        "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},                        "top_k": 2,                        "score_threshold_enabled": False,                    }                    dataset.retrieval_model = document_data.get("retrieval_model") or default_retrieval_model        documents = []        batch = time.strftime("%Y%m%d%H%M%S") + str(random.randint(100000, 999999))        if document_data.get("original_document_id"):            document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)            documents.append(document)        else:            # save process rule            if not dataset_process_rule:                process_rule = document_data["process_rule"]                if process_rule["mode"] == "custom":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(process_rule["rules"]),                        created_by=account.id,                    )                elif process_rule["mode"] == "automatic":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                        created_by=account.id,                    )                db.session.add(dataset_process_rule)                db.session.commit()            position = DocumentService.get_documents_position(dataset.id)            document_ids = []            duplicate_document_ids = []            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]                for file_id in upload_file_list:                    file = (                        db.session.query(UploadFile)                        .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)                        .first()                    )                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }                    # check duplicate                    if document_data.get("duplicate", False):                        document = Document.query.filter_by(                            dataset_id=dataset.id,                            tenant_id=current_user.current_tenant_id,                            data_source_type="upload_file",                            enabled=True,                            name=file_name,                        ).first()                        if document:                            document.dataset_process_rule_id = dataset_process_rule.id                            document.updated_at = datetime.datetime.utcnow()                            document.created_from = created_from                            document.doc_form = document_data["doc_form"]                            document.doc_language = document_data["doc_language"]                            document.data_source_info = json.dumps(data_source_info)                            document.batch = batch                            document.indexing_status = "waiting"                            db.session.add(document)                            documents.append(document)                            duplicate_document_ids.append(document.id)                            continue                    document = DocumentService.build_document(                        dataset,                        dataset_process_rule.id,                        document_data["data_source"]["type"],                        document_data["doc_form"],                        document_data["doc_language"],                        data_source_info,                        created_from,                        position,                        account,                        file_name,                        batch,                    )                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]                exist_page_ids = []                exist_document = {}                documents = Document.query.filter_by(                    dataset_id=dataset.id,                    tenant_id=current_user.current_tenant_id,                    data_source_type="notion_import",                    enabled=True,                ).all()                if documents:                    for document in documents:                        data_source_info = json.loads(document.data_source_info)                        exist_page_ids.append(data_source_info["notion_page_id"])                        exist_document[data_source_info["notion_page_id"]] = document.id                for notion_info in notion_info_list:                    workspace_id = notion_info["workspace_id"]                    data_source_binding = DataSourceOauthBinding.query.filter(                        db.and_(                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,                            DataSourceOauthBinding.provider == "notion",                            DataSourceOauthBinding.disabled == False,                            DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',                        )                    ).first()                    if not data_source_binding:                        raise ValueError("Data source binding not found.")                    for page in notion_info["pages"]:                        if page["page_id"] not in exist_page_ids:                            data_source_info = {                                "notion_workspace_id": workspace_id,                                "notion_page_id": page["page_id"],                                "notion_page_icon": page["page_icon"],                                "type": page["type"],                            }                            document = DocumentService.build_document(                                dataset,                                dataset_process_rule.id,                                document_data["data_source"]["type"],                                document_data["doc_form"],                                document_data["doc_language"],                                data_source_info,                                created_from,                                position,                                account,                                page["page_name"],                                batch,                            )                            db.session.add(document)                            db.session.flush()                            document_ids.append(document.id)                            documents.append(document)                            position += 1                        else:                            exist_document.pop(page["page_id"])                # delete not selected documents                if len(exist_document) > 0:                    clean_notion_document_task.delay(list(exist_document.values()), dataset.id)            elif document_data["data_source"]["type"] == "website_crawl":                website_info = document_data["data_source"]["info_list"]["website_info_list"]                urls = website_info["urls"]                for url in urls:                    data_source_info = {                        "url": url,                        "provider": website_info["provider"],                        "job_id": website_info["job_id"],                        "only_main_content": website_info.get("only_main_content", False),                        "mode": "crawl",                    }                    if len(url) > 255:                        document_name = url[:200] + "..."                    else:                        document_name = url                    document = DocumentService.build_document(                        dataset,                        dataset_process_rule.id,                        document_data["data_source"]["type"],                        document_data["doc_form"],                        document_data["doc_language"],                        data_source_info,                        created_from,                        position,                        account,                        document_name,                        batch,                    )                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            db.session.commit()            # trigger async task            if document_ids:                document_indexing_task.delay(dataset.id, document_ids)            if duplicate_document_ids:                duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)        return documents, batch    @staticmethod    def check_documents_upload_quota(count: int, features: FeatureModel):        can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size        if count > can_upload_size:            raise ValueError(                f"You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded."            )    @staticmethod    def build_document(        dataset: Dataset,        process_rule_id: str,        data_source_type: str,        document_form: str,        document_language: str,        data_source_info: dict,        created_from: str,        position: int,        account: Account,        name: str,        batch: str,    ):        document = Document(            tenant_id=dataset.tenant_id,            dataset_id=dataset.id,            position=position,            data_source_type=data_source_type,            data_source_info=json.dumps(data_source_info),            dataset_process_rule_id=process_rule_id,            batch=batch,            name=name,            created_from=created_from,            created_by=account.id,            doc_form=document_form,            doc_language=document_language,        )        return document    @staticmethod    def get_tenant_documents_count():        documents_count = Document.query.filter(            Document.completed_at.isnot(None),            Document.enabled == True,            Document.archived == False,            Document.tenant_id == current_user.current_tenant_id,        ).count()        return documents_count    @staticmethod    def update_document_with_dataset_id(        dataset: Dataset,        document_data: dict,        account: Account,        dataset_process_rule: Optional[DatasetProcessRule] = None,        created_from: str = "web",    ):        DatasetService.check_dataset_model_setting(dataset)        document = DocumentService.get_document(dataset.id, document_data["original_document_id"])        if document is None:            raise NotFound("Document not found")        if document.display_status != "available":            raise ValueError("Document is not available")        # update document name        if document_data.get("name"):            document.name = document_data["name"]        # save process rule        if document_data.get("process_rule"):            process_rule = document_data["process_rule"]            if process_rule["mode"] == "custom":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(process_rule["rules"]),                    created_by=account.id,                )            elif process_rule["mode"] == "automatic":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                    created_by=account.id,                )            db.session.add(dataset_process_rule)            db.session.commit()            document.dataset_process_rule_id = dataset_process_rule.id        # update document data source        if document_data.get("data_source"):            file_name = ""            data_source_info = {}            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]                for file_id in upload_file_list:                    file = (                        db.session.query(UploadFile)                        .filter(UploadFile.tenant_id == dataset.tenant_id, UploadFile.id == file_id)                        .first()                    )                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]                for notion_info in notion_info_list:                    workspace_id = notion_info["workspace_id"]                    data_source_binding = DataSourceOauthBinding.query.filter(                        db.and_(                            DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,                            DataSourceOauthBinding.provider == "notion",                            DataSourceOauthBinding.disabled == False,                            DataSourceOauthBinding.source_info["workspace_id"] == f'"{workspace_id}"',                        )                    ).first()                    if not data_source_binding:                        raise ValueError("Data source binding not found.")                    for page in notion_info["pages"]:                        data_source_info = {                            "notion_workspace_id": workspace_id,                            "notion_page_id": page["page_id"],                            "notion_page_icon": page["page_icon"],                            "type": page["type"],                        }            elif document_data["data_source"]["type"] == "website_crawl":                website_info = document_data["data_source"]["info_list"]["website_info_list"]                urls = website_info["urls"]                for url in urls:                    data_source_info = {                        "url": url,                        "provider": website_info["provider"],                        "job_id": website_info["job_id"],                        "only_main_content": website_info.get("only_main_content", False),                        "mode": "crawl",                    }            document.data_source_type = document_data["data_source"]["type"]            document.data_source_info = json.dumps(data_source_info)            document.name = file_name        # update document to be waiting        document.indexing_status = "waiting"        document.completed_at = None        document.processing_started_at = None        document.parsing_completed_at = None        document.cleaning_completed_at = None        document.splitting_completed_at = None        document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        document.created_from = created_from        document.doc_form = document_data["doc_form"]        db.session.add(document)        db.session.commit()        # update document segment        update_params = {DocumentSegment.status: "re_segment"}        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)        db.session.commit()        # trigger async task        document_indexing_update_task.delay(document.dataset_id, document.id)        return document    @staticmethod    def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            count = 0            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]["file_info_list"]["file_ids"]                count = len(upload_file_list)            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]["info_list"]["notion_info_list"]                for notion_info in notion_info_list:                    count = count + len(notion_info["pages"])            elif document_data["data_source"]["type"] == "website_crawl":                website_info = document_data["data_source"]["info_list"]["website_info_list"]                count = len(website_info["urls"])            batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)            if count > batch_upload_limit:                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")            DocumentService.check_documents_upload_quota(count, features)        dataset_collection_binding_id = None        retrieval_model = None        if document_data["indexing_technique"] == "high_quality":            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                document_data["embedding_model_provider"], document_data["embedding_model"]            )            dataset_collection_binding_id = dataset_collection_binding.id            if document_data.get("retrieval_model"):                retrieval_model = document_data["retrieval_model"]            else:                default_retrieval_model = {                    "search_method": RetrievalMethod.SEMANTIC_SEARCH.value,                    "reranking_enable": False,                    "reranking_model": {"reranking_provider_name": "", "reranking_model_name": ""},                    "top_k": 2,                    "score_threshold_enabled": False,                }                retrieval_model = default_retrieval_model        # save dataset        dataset = Dataset(            tenant_id=tenant_id,            name="",            data_source_type=document_data["data_source"]["type"],            indexing_technique=document_data.get("indexing_technique", "high_quality"),            created_by=account.id,            embedding_model=document_data.get("embedding_model"),            embedding_model_provider=document_data.get("embedding_model_provider"),            collection_binding_id=dataset_collection_binding_id,            retrieval_model=retrieval_model,        )        db.session.add(dataset)        db.session.flush()        documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)        cut_length = 18        cut_name = documents[0].name[:cut_length]        dataset.name = cut_name + "..."        dataset.description = "useful for when you want to answer queries about the " + documents[0].name        db.session.commit()        return dataset, documents, batch    @classmethod    def document_create_args_validate(cls, args: dict):        if "original_document_id" not in args or not args["original_document_id"]:            DocumentService.data_source_args_validate(args)            DocumentService.process_rule_args_validate(args)        else:            if ("data_source" not in args or not args["data_source"]) and (                "process_rule" not in args or not args["process_rule"]            ):                raise ValueError("Data source or Process rule is required")            else:                if args.get("data_source"):                    DocumentService.data_source_args_validate(args)                if args.get("process_rule"):                    DocumentService.process_rule_args_validate(args)    @classmethod    def data_source_args_validate(cls, args: dict):        if "data_source" not in args or not args["data_source"]:            raise ValueError("Data source is required")        if not isinstance(args["data_source"], dict):            raise ValueError("Data source is invalid")        if "type" not in args["data_source"] or not args["data_source"]["type"]:            raise ValueError("Data source type is required")        if args["data_source"]["type"] not in Document.DATA_SOURCES:            raise ValueError("Data source type is invalid")        if "info_list" not in args["data_source"] or not args["data_source"]["info_list"]:            raise ValueError("Data source info is required")        if args["data_source"]["type"] == "upload_file":            if (                "file_info_list" not in args["data_source"]["info_list"]                or not args["data_source"]["info_list"]["file_info_list"]            ):                raise ValueError("File source info is required")        if args["data_source"]["type"] == "notion_import":            if (                "notion_info_list" not in args["data_source"]["info_list"]                or not args["data_source"]["info_list"]["notion_info_list"]            ):                raise ValueError("Notion source info is required")        if args["data_source"]["type"] == "website_crawl":            if (                "website_info_list" not in args["data_source"]["info_list"]                or not args["data_source"]["info_list"]["website_info_list"]            ):                raise ValueError("Website source info is required")    @classmethod    def process_rule_args_validate(cls, args: dict):        if "process_rule" not in args or not args["process_rule"]:            raise ValueError("Process rule is required")        if not isinstance(args["process_rule"], dict):            raise ValueError("Process rule is invalid")        if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:            raise ValueError("Process rule mode is required")        if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args["process_rule"]["mode"] == "automatic":            args["process_rule"]["rules"] = {}        else:            if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:                raise ValueError("Process rule rules is required")            if not isinstance(args["process_rule"]["rules"], dict):                raise ValueError("Process rule rules is invalid")            if (                "pre_processing_rules" not in args["process_rule"]["rules"]                or args["process_rule"]["rules"]["pre_processing_rules"] is None            ):                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:                if "id" not in pre_processing_rule or not pre_processing_rule["id"]:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule["enabled"], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule            args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())            if (                "segmentation" not in args["process_rule"]["rules"]                or args["process_rule"]["rules"]["segmentation"] is None            ):                raise ValueError("Process rule segmentation is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):                raise ValueError("Process rule segmentation is invalid")            if (                "separator" not in args["process_rule"]["rules"]["segmentation"]                or not args["process_rule"]["rules"]["segmentation"]["separator"]            ):                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):                raise ValueError("Process rule segmentation separator is invalid")            if (                "max_tokens" not in args["process_rule"]["rules"]["segmentation"]                or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]            ):                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):                raise ValueError("Process rule segmentation max_tokens is invalid")    @classmethod    def estimate_args_validate(cls, args: dict):        if "info_list" not in args or not args["info_list"]:            raise ValueError("Data source info is required")        if not isinstance(args["info_list"], dict):            raise ValueError("Data info is invalid")        if "process_rule" not in args or not args["process_rule"]:            raise ValueError("Process rule is required")        if not isinstance(args["process_rule"], dict):            raise ValueError("Process rule is invalid")        if "mode" not in args["process_rule"] or not args["process_rule"]["mode"]:            raise ValueError("Process rule mode is required")        if args["process_rule"]["mode"] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args["process_rule"]["mode"] == "automatic":            args["process_rule"]["rules"] = {}        else:            if "rules" not in args["process_rule"] or not args["process_rule"]["rules"]:                raise ValueError("Process rule rules is required")            if not isinstance(args["process_rule"]["rules"], dict):                raise ValueError("Process rule rules is invalid")            if (                "pre_processing_rules" not in args["process_rule"]["rules"]                or args["process_rule"]["rules"]["pre_processing_rules"] is None            ):                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args["process_rule"]["rules"]["pre_processing_rules"], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args["process_rule"]["rules"]["pre_processing_rules"]:                if "id" not in pre_processing_rule or not pre_processing_rule["id"]:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule["id"] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if "enabled" not in pre_processing_rule or pre_processing_rule["enabled"] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule["enabled"], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule["id"]] = pre_processing_rule            args["process_rule"]["rules"]["pre_processing_rules"] = list(unique_pre_processing_rule_dicts.values())            if (                "segmentation" not in args["process_rule"]["rules"]                or args["process_rule"]["rules"]["segmentation"] is None            ):                raise ValueError("Process rule segmentation is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"], dict):                raise ValueError("Process rule segmentation is invalid")            if (                "separator" not in args["process_rule"]["rules"]["segmentation"]                or not args["process_rule"]["rules"]["segmentation"]["separator"]            ):                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"]["separator"], str):                raise ValueError("Process rule segmentation separator is invalid")            if (                "max_tokens" not in args["process_rule"]["rules"]["segmentation"]                or not args["process_rule"]["rules"]["segmentation"]["max_tokens"]            ):                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args["process_rule"]["rules"]["segmentation"]["max_tokens"], int):                raise ValueError("Process rule segmentation max_tokens is invalid")class SegmentService:    @classmethod    def segment_create_args_validate(cls, args: dict, document: Document):        if document.doc_form == "qa_model":            if "answer" not in args or not args["answer"]:                raise ValueError("Answer is required")            if not args["answer"].strip():                raise ValueError("Answer is empty")        if "content" not in args or not args["content"] or not args["content"].strip():            raise ValueError("Content is empty")    @classmethod    def create_segment(cls, args: dict, document: Document, dataset: Dataset):        content = args["content"]        doc_id = str(uuid.uuid4())        segment_hash = helper.generate_text_hash(content)        tokens = 0        if dataset.indexing_technique == "high_quality":            model_manager = ModelManager()            embedding_model = model_manager.get_model_instance(                tenant_id=current_user.current_tenant_id,                provider=dataset.embedding_model_provider,                model_type=ModelType.TEXT_EMBEDDING,                model=dataset.embedding_model,            )            # calc embedding use tokens            tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])        lock_name = "add_segment_lock_document_id_{}".format(document.id)        with redis_client.lock(lock_name, timeout=600):            max_position = (                db.session.query(func.max(DocumentSegment.position))                .filter(DocumentSegment.document_id == document.id)                .scalar()            )            segment_document = DocumentSegment(                tenant_id=current_user.current_tenant_id,                dataset_id=document.dataset_id,                document_id=document.id,                index_node_id=doc_id,                index_node_hash=segment_hash,                position=max_position + 1 if max_position else 1,                content=content,                word_count=len(content),                tokens=tokens,                status="completed",                indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                created_by=current_user.id,            )            if document.doc_form == "qa_model":                segment_document.answer = args["answer"]            db.session.add(segment_document)            db.session.commit()            # save vector index            try:                VectorService.create_segments_vector([args["keywords"]], [segment_document], dataset)            except Exception as e:                logging.exception("create segment index failed")                segment_document.enabled = False                segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment_document.status = "error"                segment_document.error = str(e)                db.session.commit()            segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()            return segment    @classmethod    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):        lock_name = "multi_add_segment_lock_document_id_{}".format(document.id)        with redis_client.lock(lock_name, timeout=600):            embedding_model = None            if dataset.indexing_technique == "high_quality":                model_manager = ModelManager()                embedding_model = model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model,                )            max_position = (                db.session.query(func.max(DocumentSegment.position))                .filter(DocumentSegment.document_id == document.id)                .scalar()            )            pre_segment_data_list = []            segment_data_list = []            keywords_list = []            for segment_item in segments:                content = segment_item["content"]                doc_id = str(uuid.uuid4())                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == "high_quality" and embedding_model:                    # calc embedding use tokens                    tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])                segment_document = DocumentSegment(                    tenant_id=current_user.current_tenant_id,                    dataset_id=document.dataset_id,                    document_id=document.id,                    index_node_id=doc_id,                    index_node_hash=segment_hash,                    position=max_position + 1 if max_position else 1,                    content=content,                    word_count=len(content),                    tokens=tokens,                    status="completed",                    indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    created_by=current_user.id,                )                if document.doc_form == "qa_model":                    segment_document.answer = segment_item["answer"]                db.session.add(segment_document)                segment_data_list.append(segment_document)                pre_segment_data_list.append(segment_document)                if "keywords" in segment_item:                    keywords_list.append(segment_item["keywords"])                else:                    keywords_list.append(None)            try:                # save vector index                VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)            except Exception as e:                logging.exception("create segment index failed")                for segment_document in segment_data_list:                    segment_document.enabled = False                    segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                    segment_document.status = "error"                    segment_document.error = str(e)            db.session.commit()            return segment_data_list    @classmethod    def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = "segment_{}_indexing".format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is indexing, please try again later")        if "enabled" in args and args["enabled"] is not None:            action = args["enabled"]            if segment.enabled != action:                if not action:                    segment.enabled = action                    segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                    segment.disabled_by = current_user.id                    db.session.add(segment)                    db.session.commit()                    # Set cache to prevent indexing the same segment multiple times                    redis_client.setex(indexing_cache_key, 600, 1)                    disable_segment_from_index_task.delay(segment.id)                    return segment        if not segment.enabled:            if "enabled" in args and args["enabled"] is not None:                if not args["enabled"]:                    raise ValueError("Can't update disabled segment")            else:                raise ValueError("Can't update disabled segment")        try:            content = args["content"]            if segment.content == content:                if document.doc_form == "qa_model":                    segment.answer = args["answer"]                if args.get("keywords"):                    segment.keywords = args["keywords"]                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                db.session.add(segment)                db.session.commit()                # update segment index task                if "keywords" in args:                    keyword = Keyword(dataset)                    keyword.delete_by_ids([segment.index_node_id])                    document = RAGDocument(                        page_content=segment.content,                        metadata={                            "doc_id": segment.index_node_id,                            "doc_hash": segment.index_node_hash,                            "document_id": segment.document_id,                            "dataset_id": segment.dataset_id,                        },                    )                    keyword.add_texts([document], keywords_list=[args["keywords"]])            else:                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == "high_quality":                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=dataset.embedding_model_provider,                        model_type=ModelType.TEXT_EMBEDDING,                        model=dataset.embedding_model,                    )                    # calc embedding use tokens                    tokens = embedding_model.get_text_embedding_num_tokens(texts=[content])                segment.content = content                segment.index_node_hash = segment_hash                segment.word_count = len(content)                segment.tokens = tokens                segment.status = "completed"                segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.updated_by = current_user.id                segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                if document.doc_form == "qa_model":                    segment.answer = args["answer"]                db.session.add(segment)                db.session.commit()                # update segment vector index                VectorService.update_segment_vector(args["keywords"], segment, dataset)        except Exception as e:            logging.exception("update segment index failed")            segment.enabled = False            segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)            segment.status = "error"            segment.error = str(e)            db.session.commit()        segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()        return segment    @classmethod    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = "segment_{}_delete_indexing".format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is deleting.")        # enabled segment need to delete index        if segment.enabled:            # send delete segment index task            redis_client.setex(indexing_cache_key, 600, 1)            delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)        db.session.delete(segment)        db.session.commit()class DatasetCollectionBindingService:    @classmethod    def get_dataset_collection_binding(        cls, provider_name: str, model_name: str, collection_type: str = "dataset"    ) -> DatasetCollectionBinding:        dataset_collection_binding = (            db.session.query(DatasetCollectionBinding)            .filter(                DatasetCollectionBinding.provider_name == provider_name,                DatasetCollectionBinding.model_name == model_name,                DatasetCollectionBinding.type == collection_type,            )            .order_by(DatasetCollectionBinding.created_at)            .first()        )        if not dataset_collection_binding:            dataset_collection_binding = DatasetCollectionBinding(                provider_name=provider_name,                model_name=model_name,                collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),                type=collection_type,            )            db.session.add(dataset_collection_binding)            db.session.commit()        return dataset_collection_binding    @classmethod    def get_dataset_collection_binding_by_id_and_type(        cls, collection_binding_id: str, collection_type: str = "dataset"    ) -> DatasetCollectionBinding:        dataset_collection_binding = (            db.session.query(DatasetCollectionBinding)            .filter(                DatasetCollectionBinding.id == collection_binding_id, DatasetCollectionBinding.type == collection_type            )            .order_by(DatasetCollectionBinding.created_at)            .first()        )        return dataset_collection_bindingclass DatasetPermissionService:    @classmethod    def get_dataset_partial_member_list(cls, dataset_id):        user_list_query = (            db.session.query(                DatasetPermission.account_id,            )            .filter(DatasetPermission.dataset_id == dataset_id)            .all()        )        user_list = []        for user in user_list_query:            user_list.append(user.account_id)        return user_list    @classmethod    def update_partial_member_list(cls, tenant_id, dataset_id, user_list):        try:            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()            permissions = []            for user in user_list:                permission = DatasetPermission(                    tenant_id=tenant_id,                    dataset_id=dataset_id,                    account_id=user["user_id"],                )                permissions.append(permission)            db.session.add_all(permissions)            db.session.commit()        except Exception as e:            db.session.rollback()            raise e    @classmethod    def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):        if not user.is_dataset_editor:            raise NoPermissionError("User does not have permission to edit this dataset.")        if user.is_dataset_operator and dataset.permission != requested_permission:            raise NoPermissionError("Dataset operators cannot change the dataset permissions.")        if user.is_dataset_operator and requested_permission == "partial_members":            if not requested_partial_member_list:                raise ValueError("Partial member list is required when setting to partial members.")            local_member_list = cls.get_dataset_partial_member_list(dataset.id)            request_member_list = [user["user_id"] for user in requested_partial_member_list]            if set(local_member_list) != set(request_member_list):                raise ValueError("Dataset operators cannot change the dataset permissions.")    @classmethod    def clear_partial_member_list(cls, dataset_id):        try:            db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()            db.session.commit()        except Exception as e:            db.session.rollback()            raise e
 |