| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175 | import jsonimport loggingimport datetimeimport timeimport randomimport uuidfrom typing import Optional, Listfrom flask import current_appfrom sqlalchemy import funcfrom core.index.index import IndexBuilderfrom core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_providers.model_factory import ModelFactoryfrom extensions.ext_redis import redis_clientfrom flask_login import current_userfrom events.dataset_event import dataset_was_deletedfrom events.document_event import document_was_deletedfrom extensions.ext_database import dbfrom libs import helperfrom models.account import Accountfrom models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment, \    DatasetCollectionBindingfrom models.model import UploadFilefrom models.source import DataSourceBindingfrom services.errors.account import NoPermissionErrorfrom services.errors.dataset import DatasetNameDuplicateErrorfrom services.errors.document import DocumentIndexingErrorfrom services.errors.file import FileNotExistsErrorfrom services.vector_service import VectorServicefrom tasks.clean_notion_document_task import clean_notion_document_taskfrom tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_taskfrom tasks.document_indexing_task import document_indexing_taskfrom tasks.document_indexing_update_task import document_indexing_update_taskfrom tasks.create_segment_to_index_task import create_segment_to_index_taskfrom tasks.update_segment_index_task import update_segment_index_taskfrom tasks.recover_document_indexing_task import recover_document_indexing_taskfrom tasks.update_segment_keyword_index_task import update_segment_keyword_index_taskfrom tasks.delete_segment_from_index_task import delete_segment_from_index_taskclass DatasetService:    @staticmethod    def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):        if user:            permission_filter = db.or_(Dataset.created_by == user.id,                                       Dataset.permission == 'all_team_members')        else:            permission_filter = Dataset.permission == 'all_team_members'        datasets = Dataset.query.filter(            db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \            .order_by(Dataset.created_at.desc()) \            .paginate(            page=page,            per_page=per_page,            max_per_page=100,            error_out=False        )        return datasets.items, datasets.total    @staticmethod    def get_process_rules(dataset_id):        # get the latest process rule        dataset_process_rule = db.session.query(DatasetProcessRule). \            filter(DatasetProcessRule.dataset_id == dataset_id). \            order_by(DatasetProcessRule.created_at.desc()). \            limit(1). \            one_or_none()        if dataset_process_rule:            mode = dataset_process_rule.mode            rules = dataset_process_rule.rules_dict        else:            mode = DocumentService.DEFAULT_RULES['mode']            rules = DocumentService.DEFAULT_RULES['rules']        return {            'mode': mode,            'rules': rules        }    @staticmethod    def get_datasets_by_ids(ids, tenant_id):        datasets = Dataset.query.filter(Dataset.id.in_(ids),                                        Dataset.tenant_id == tenant_id).paginate(            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)        return datasets.items, datasets.total    @staticmethod    def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):        # check if dataset name already exists        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():            raise DatasetNameDuplicateError(                f'Dataset with name {name} already exists.')        embedding_model = None        if indexing_technique == 'high_quality':            embedding_model = ModelFactory.get_embedding_model(                tenant_id=tenant_id            )        dataset = Dataset(name=name, indexing_technique=indexing_technique)        # dataset = Dataset(name=name, provider=provider, config=config)        dataset.created_by = account.id        dataset.updated_by = account.id        dataset.tenant_id = tenant_id        dataset.embedding_model_provider = embedding_model.model_provider.provider_name if embedding_model else None        dataset.embedding_model = embedding_model.name if embedding_model else None        db.session.add(dataset)        db.session.commit()        return dataset    @staticmethod    def get_dataset(dataset_id):        dataset = Dataset.query.filter_by(            id=dataset_id        ).first()        if dataset is None:            return None        else:            return dataset    @staticmethod    def check_dataset_model_setting(dataset):        if dataset.indexing_technique == 'high_quality':            try:                ModelFactory.get_embedding_model(                    tenant_id=dataset.tenant_id,                    model_provider_name=dataset.embedding_model_provider,                    model_name=dataset.embedding_model                )            except LLMBadRequestError:                raise ValueError(                    f"No Embedding Model available. Please configure a valid provider "                    f"in the Settings -> Model Provider.")            except ProviderTokenNotInitError as ex:                raise ValueError(f"The dataset in unavailable, due to: "                                 f"{ex.description}")    @staticmethod    def update_dataset(dataset_id, data, user):        filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}        dataset = DatasetService.get_dataset(dataset_id)        DatasetService.check_dataset_permission(dataset, user)        action = None        if dataset.indexing_technique != data['indexing_technique']:            # if update indexing_technique            if data['indexing_technique'] == 'economy':                action = 'remove'                filtered_data['embedding_model'] = None                filtered_data['embedding_model_provider'] = None                filtered_data['collection_binding_id'] = None            elif data['indexing_technique'] == 'high_quality':                action = 'add'                # get embedding model setting                try:                    embedding_model = ModelFactory.get_embedding_model(                        tenant_id=current_user.current_tenant_id                    )                    filtered_data['embedding_model'] = embedding_model.name                    filtered_data['embedding_model_provider'] = embedding_model.model_provider.provider_name                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                        embedding_model.model_provider.provider_name,                        embedding_model.name                    )                    filtered_data['collection_binding_id'] = dataset_collection_binding.id                except LLMBadRequestError:                    raise ValueError(                        f"No Embedding Model available. Please configure a valid provider "                        f"in the Settings -> Model Provider.")                except ProviderTokenNotInitError as ex:                    raise ValueError(ex.description)        filtered_data['updated_by'] = user.id        filtered_data['updated_at'] = datetime.datetime.now()        dataset.query.filter_by(id=dataset_id).update(filtered_data)        db.session.commit()        if action:            deal_dataset_vector_index_task.delay(dataset_id, action)        return dataset    @staticmethod    def delete_dataset(dataset_id, user):        # todo: cannot delete dataset if it is being processed        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            return False        DatasetService.check_dataset_permission(dataset, user)        dataset_was_deleted.send(dataset)        db.session.delete(dataset)        db.session.commit()        return True    @staticmethod    def check_dataset_permission(dataset, user):        if dataset.tenant_id != user.current_tenant_id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')        if dataset.permission == 'only_me' and dataset.created_by != user.id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')    @staticmethod    def get_dataset_queries(dataset_id: str, page: int, per_page: int):        dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \            .order_by(db.desc(DatasetQuery.created_at)) \            .paginate(            page=page, per_page=per_page, max_per_page=100, error_out=False        )        return dataset_queries.items, dataset_queries.total    @staticmethod    def get_related_apps(dataset_id: str):        return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \            .order_by(db.desc(AppDatasetJoin.created_at)).all()class DocumentService:    DEFAULT_RULES = {        'mode': 'custom',        'rules': {            'pre_processing_rules': [                {'id': 'remove_extra_spaces', 'enabled': True},                {'id': 'remove_urls_emails', 'enabled': False}            ],            'segmentation': {                'delimiter': '\n',                'max_tokens': 500            }        }    }    DOCUMENT_METADATA_SCHEMA = {        "book": {            "title": str,            "language": str,            "author": str,            "publisher": str,            "publication_date": str,            "isbn": str,            "category": str,        },        "web_page": {            "title": str,            "url": str,            "language": str,            "publish_date": str,            "author/publisher": str,            "topic/keywords": str,            "description": str,        },        "paper": {            "title": str,            "language": str,            "author": str,            "publish_date": str,            "journal/conference_name": str,            "volume/issue/page_numbers": str,            "doi": str,            "topic/keywords": str,            "abstract": str,        },        "social_media_post": {            "platform": str,            "author/username": str,            "publish_date": str,            "post_url": str,            "topic/tags": str,        },        "wikipedia_entry": {            "title": str,            "language": str,            "web_page_url": str,            "last_edit_date": str,            "editor/contributor": str,            "summary/introduction": str,        },        "personal_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "tags/category": str,        },        "business_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "department/team": str,        },        "im_chat_log": {            "chat_platform": str,            "chat_participants/group_name": str,            "start_date": str,            "end_date": str,            "summary": str,        },        "synced_from_notion": {            "title": str,            "language": str,            "author/creator": str,            "creation_date": str,            "last_modified_date": str,            "notion_page_link": str,            "category/tags": str,            "description": str,        },        "synced_from_github": {            "repository_name": str,            "repository_description": str,            "repository_owner/organization": str,            "code_filename": str,            "code_file_path": str,            "programming_language": str,            "github_link": str,            "open_source_license": str,            "commit_date": str,            "commit_author": str,        },        "others": dict    }    @staticmethod    def get_document(dataset_id: str, document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id,            Document.dataset_id == dataset_id        ).first()        return document    @staticmethod    def get_document_by_id(document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id        ).first()        return document    @staticmethod    def get_document_by_dataset_id(dataset_id: str) -> List[Document]:        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.enabled == True        ).all()        return documents    @staticmethod    def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:        documents = db.session.query(Document).filter(            Document.batch == batch,            Document.dataset_id == dataset_id,            Document.tenant_id == current_user.current_tenant_id        ).all()        return documents    @staticmethod    def get_document_file_detail(file_id: str):        file_detail = db.session.query(UploadFile). \            filter(UploadFile.id == file_id). \            one_or_none()        return file_detail    @staticmethod    def check_archived(document):        if document.archived:            return True        else:            return False    @staticmethod    def delete_document(document):        if document.indexing_status in ["parsing", "cleaning", "splitting", "indexing"]:            raise DocumentIndexingError()        # trigger document_was_deleted signal        document_was_deleted.send(document.id, dataset_id=document.dataset_id)        db.session.delete(document)        db.session.commit()    @staticmethod    def pause_document(document):        if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:            raise DocumentIndexingError()        # update document to be paused        document.is_paused = True        document.paused_by = current_user.id        document.paused_at = datetime.datetime.utcnow()        db.session.add(document)        db.session.commit()        # set document paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.setnx(indexing_cache_key, "True")    @staticmethod    def recover_document(document):        if not document.is_paused:            raise DocumentIndexingError()        # update document to be recover        document.is_paused = False        document.paused_by = None        document.paused_at = None        db.session.add(document)        db.session.commit()        # delete paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.delete(indexing_cache_key)        # trigger async task        recover_document_indexing_task.delay(document.dataset_id, document.id)    @staticmethod    def get_documents_position(dataset_id):        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()        if document:            return document.position + 1        else:            return 1    @staticmethod    def save_document_with_dataset_id(dataset: Dataset, document_data: dict,                                      account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                      created_from: str = 'web'):        # check document limit        if current_app.config['EDITION'] == 'CLOUD':            if 'original_document_id' not in document_data or not document_data['original_document_id']:                count = 0                if document_data["data_source"]["type"] == "upload_file":                    upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                    count = len(upload_file_list)                elif document_data["data_source"]["type"] == "notion_import":                    notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                    for notion_info in notion_info_list:                        count = count + len(notion_info['pages'])                documents_count = DocumentService.get_tenant_documents_count()                total_count = documents_count + count                tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])                if total_count > tenant_document_count:                    raise ValueError(f"over document limit {tenant_document_count}.")        # if dataset is empty, update dataset data_source_type        if not dataset.data_source_type:            dataset.data_source_type = document_data["data_source"]["type"]        if not dataset.indexing_technique:            if 'indexing_technique' not in document_data \                    or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:                raise ValueError("Indexing technique is required")            dataset.indexing_technique = document_data["indexing_technique"]            if document_data["indexing_technique"] == 'high_quality':                embedding_model = ModelFactory.get_embedding_model(                    tenant_id=dataset.tenant_id                )                dataset.embedding_model = embedding_model.name                dataset.embedding_model_provider = embedding_model.model_provider.provider_name                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                    embedding_model.model_provider.provider_name,                    embedding_model.name                )                dataset.collection_binding_id = dataset_collection_binding.id        documents = []        batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))        if 'original_document_id' in document_data and document_data["original_document_id"]:            document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)            documents.append(document)        else:            # save process rule            if not dataset_process_rule:                process_rule = document_data["process_rule"]                if process_rule["mode"] == "custom":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(process_rule["rules"]),                        created_by=account.id                    )                elif process_rule["mode"] == "automatic":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                        created_by=account.id                    )                db.session.add(dataset_process_rule)                db.session.commit()            position = DocumentService.get_documents_position(dataset.id)            document_ids = []            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }                    document = DocumentService.build_document(dataset, dataset_process_rule.id,                                                              document_data["data_source"]["type"],                                                              document_data["doc_form"],                                                              document_data["doc_language"],                                                              data_source_info, created_from, position,                                                              account, file_name, batch)                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                exist_page_ids = []                exist_document = dict()                documents = Document.query.filter_by(                    dataset_id=dataset.id,                    tenant_id=current_user.current_tenant_id,                    data_source_type='notion_import',                    enabled=True                ).all()                if documents:                    for document in documents:                        data_source_info = json.loads(document.data_source_info)                        exist_page_ids.append(data_source_info['notion_page_id'])                        exist_document[data_source_info['notion_page_id']] = document.id                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        if page['page_id'] not in exist_page_ids:                            data_source_info = {                                "notion_workspace_id": workspace_id,                                "notion_page_id": page['page_id'],                                "notion_page_icon": page['page_icon'],                                "type": page['type']                            }                            document = DocumentService.build_document(dataset, dataset_process_rule.id,                                                                      document_data["data_source"]["type"],                                                                      document_data["doc_form"],                                                                      document_data["doc_language"],                                                                      data_source_info, created_from, position,                                                                      account, page['page_name'], batch)                            db.session.add(document)                            db.session.flush()                            document_ids.append(document.id)                            documents.append(document)                            position += 1                        else:                            exist_document.pop(page['page_id'])                # delete not selected documents                if len(exist_document) > 0:                    clean_notion_document_task.delay(list(exist_document.values()), dataset.id)            db.session.commit()            # trigger async task            document_indexing_task.delay(dataset.id, document_ids)        return documents, batch    @staticmethod    def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,                       document_language: str, data_source_info: dict, created_from: str, position: int,                       account: Account,                       name: str, batch: str):        document = Document(            tenant_id=dataset.tenant_id,            dataset_id=dataset.id,            position=position,            data_source_type=data_source_type,            data_source_info=json.dumps(data_source_info),            dataset_process_rule_id=process_rule_id,            batch=batch,            name=name,            created_from=created_from,            created_by=account.id,            doc_form=document_form,            doc_language=document_language        )        return document    @staticmethod    def get_tenant_documents_count():        documents_count = Document.query.filter(Document.completed_at.isnot(None),                                                Document.enabled == True,                                                Document.archived == False,                                                Document.tenant_id == current_user.current_tenant_id).count()        return documents_count    @staticmethod    def update_document_with_dataset_id(dataset: Dataset, document_data: dict,                                        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                        created_from: str = 'web'):        DatasetService.check_dataset_model_setting(dataset)        document = DocumentService.get_document(dataset.id, document_data["original_document_id"])        if document.display_status != 'available':            raise ValueError("Document is not available")        # update document name        if 'name' in document_data and document_data['name']:            document.name = document_data['name']        # save process rule        if 'process_rule' in document_data and document_data['process_rule']:            process_rule = document_data["process_rule"]            if process_rule["mode"] == "custom":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(process_rule["rules"]),                    created_by=account.id                )            elif process_rule["mode"] == "automatic":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                    created_by=account.id                )            db.session.add(dataset_process_rule)            db.session.commit()            document.dataset_process_rule_id = dataset_process_rule.id        # update document data source        if 'data_source' in document_data and document_data['data_source']:            file_name = ''            data_source_info = {}            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        data_source_info = {                            "notion_workspace_id": workspace_id,                            "notion_page_id": page['page_id'],                            "notion_page_icon": page['page_icon'],                            "type": page['type']                        }            document.data_source_type = document_data["data_source"]["type"]            document.data_source_info = json.dumps(data_source_info)            document.name = file_name        # update document to be waiting        document.indexing_status = 'waiting'        document.completed_at = None        document.processing_started_at = None        document.parsing_completed_at = None        document.cleaning_completed_at = None        document.splitting_completed_at = None        document.updated_at = datetime.datetime.utcnow()        document.created_from = created_from        document.doc_form = document_data['doc_form']        db.session.add(document)        db.session.commit()        # update document segment        update_params = {            DocumentSegment.status: 're_segment'        }        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)        db.session.commit()        # trigger async task        document_indexing_update_task.delay(document.dataset_id, document.id)        return document    @staticmethod    def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):        count = 0        if document_data["data_source"]["type"] == "upload_file":            upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']            count = len(upload_file_list)        elif document_data["data_source"]["type"] == "notion_import":            notion_info_list = document_data["data_source"]['info_list']['notion_info_list']            for notion_info in notion_info_list:                count = count + len(notion_info['pages'])        # check document limit        if current_app.config['EDITION'] == 'CLOUD':            documents_count = DocumentService.get_tenant_documents_count()            total_count = documents_count + count            tenant_document_count = int(current_app.config['TENANT_DOCUMENT_COUNT'])            if total_count > tenant_document_count:                raise ValueError(f"All your documents have overed limit {tenant_document_count}.")        embedding_model = None        dataset_collection_binding_id = None        if document_data['indexing_technique'] == 'high_quality':            embedding_model = ModelFactory.get_embedding_model(                tenant_id=tenant_id            )            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                embedding_model.model_provider.provider_name,                embedding_model.name            )            dataset_collection_binding_id = dataset_collection_binding.id        # save dataset        dataset = Dataset(            tenant_id=tenant_id,            name='',            data_source_type=document_data["data_source"]["type"],            indexing_technique=document_data["indexing_technique"],            created_by=account.id,            embedding_model=embedding_model.name if embedding_model else None,            embedding_model_provider=embedding_model.model_provider.provider_name if embedding_model else None,            collection_binding_id=dataset_collection_binding_id        )        db.session.add(dataset)        db.session.flush()        documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)        cut_length = 18        cut_name = documents[0].name[:cut_length]        dataset.name = cut_name + '...'        dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name        db.session.commit()        return dataset, documents, batch    @classmethod    def  document_create_args_validate(cls, args: dict):        if 'original_document_id' not in args or not args['original_document_id']:            DocumentService.data_source_args_validate(args)            DocumentService.process_rule_args_validate(args)        else:            if ('data_source' not in args and not args['data_source']) \                    and ('process_rule' not in args and not args['process_rule']):                raise ValueError("Data source or Process rule is required")            else:                if 'data_source' in args and args['data_source']:                    DocumentService.data_source_args_validate(args)                if 'process_rule' in args and args['process_rule']:                    DocumentService.process_rule_args_validate(args)    @classmethod    def data_source_args_validate(cls, args: dict):        if 'data_source' not in args or not args['data_source']:            raise ValueError("Data source is required")        if not isinstance(args['data_source'], dict):            raise ValueError("Data source is invalid")        if 'type' not in args['data_source'] or not args['data_source']['type']:            raise ValueError("Data source type is required")        if args['data_source']['type'] not in Document.DATA_SOURCES:            raise ValueError("Data source type is invalid")        if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:            raise ValueError("Data source info is required")        if args['data_source']['type'] == 'upload_file':            if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'file_info_list']:                raise ValueError("File source info is required")        if args['data_source']['type'] == 'notion_import':            if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'notion_info_list']:                raise ValueError("Notion source info is required")    @classmethod    def process_rule_args_validate(cls, args: dict):        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")    @classmethod    def estimate_args_validate(cls, args: dict):        if 'info_list' not in args or not args['info_list']:            raise ValueError("Data source info is required")        if not isinstance(args['info_list'], dict):            raise ValueError("Data info is invalid")        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")class SegmentService:    @classmethod    def segment_create_args_validate(cls, args: dict, document: Document):        if document.doc_form == 'qa_model':            if 'answer' not in args or not args['answer']:                raise ValueError("Answer is required")            if not args['answer'].strip():                raise ValueError("Answer is empty")        if 'content' not in args or not args['content'] or not args['content'].strip():            raise ValueError("Content is empty")    @classmethod    def create_segment(cls, args: dict, document: Document, dataset: Dataset):        content = args['content']        doc_id = str(uuid.uuid4())        segment_hash = helper.generate_text_hash(content)        tokens = 0        if dataset.indexing_technique == 'high_quality':            embedding_model = ModelFactory.get_embedding_model(                tenant_id=dataset.tenant_id,                model_provider_name=dataset.embedding_model_provider,                model_name=dataset.embedding_model            )            # calc embedding use tokens            tokens = embedding_model.get_num_tokens(content)        max_position = db.session.query(func.max(DocumentSegment.position)).filter(            DocumentSegment.document_id == document.id        ).scalar()        segment_document = DocumentSegment(            tenant_id=current_user.current_tenant_id,            dataset_id=document.dataset_id,            document_id=document.id,            index_node_id=doc_id,            index_node_hash=segment_hash,            position=max_position + 1 if max_position else 1,            content=content,            word_count=len(content),            tokens=tokens,            status='completed',            indexing_at=datetime.datetime.utcnow(),            completed_at=datetime.datetime.utcnow(),            created_by=current_user.id        )        if document.doc_form == 'qa_model':            segment_document.answer = args['answer']        db.session.add(segment_document)        db.session.commit()        # save vector index        try:            VectorService.create_segment_vector(args['keywords'], segment_document, dataset)        except Exception as e:            logging.exception("create segment index failed")            segment_document.enabled = False            segment_document.disabled_at = datetime.datetime.utcnow()            segment_document.status = 'error'            segment_document.error = str(e)            db.session.commit()        segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()        return segment    @classmethod    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):        embedding_model = None        if dataset.indexing_technique == 'high_quality':            embedding_model = ModelFactory.get_embedding_model(                tenant_id=dataset.tenant_id,                model_provider_name=dataset.embedding_model_provider,                model_name=dataset.embedding_model            )        max_position = db.session.query(func.max(DocumentSegment.position)).filter(            DocumentSegment.document_id == document.id        ).scalar()        pre_segment_data_list = []        segment_data_list = []        for segment_item in segments:            content = segment_item['content']            doc_id = str(uuid.uuid4())            segment_hash = helper.generate_text_hash(content)            tokens = 0            if dataset.indexing_technique == 'high_quality' and embedding_model:                # calc embedding use tokens                tokens = embedding_model.get_num_tokens(content)            segment_document = DocumentSegment(                tenant_id=current_user.current_tenant_id,                dataset_id=document.dataset_id,                document_id=document.id,                index_node_id=doc_id,                index_node_hash=segment_hash,                position=max_position + 1 if max_position else 1,                content=content,                word_count=len(content),                tokens=tokens,                status='completed',                indexing_at=datetime.datetime.utcnow(),                completed_at=datetime.datetime.utcnow(),                created_by=current_user.id            )            if document.doc_form == 'qa_model':                segment_document.answer = segment_item['answer']            db.session.add(segment_document)            segment_data_list.append(segment_document)            pre_segment_data = {                'segment': segment_document,                'keywords': segment_item['keywords']            }            pre_segment_data_list.append(pre_segment_data)        try:            # save vector index            VectorService.multi_create_segment_vector(pre_segment_data_list, dataset)        except Exception as e:            logging.exception("create segment index failed")            for segment_document in segment_data_list:                segment_document.enabled = False                segment_document.disabled_at = datetime.datetime.utcnow()                segment_document.status = 'error'                segment_document.error = str(e)        db.session.commit()        return segment_data_list    @classmethod    def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is indexing, please try again later")        try:            content = args['content']            if segment.content == content:                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                if args['keywords']:                    segment.keywords = args['keywords']                if args['enabled'] is not None:                    segment.enabled = args['enabled']                db.session.add(segment)                db.session.commit()                # update segment index task                if args['keywords']:                    kw_index = IndexBuilder.get_index(dataset, 'economy')                    # delete from keyword index                    kw_index.delete_by_ids([segment.index_node_id])                    # save keyword index                    kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)            else:                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == 'high_quality':                    embedding_model = ModelFactory.get_embedding_model(                        tenant_id=dataset.tenant_id,                        model_provider_name=dataset.embedding_model_provider,                        model_name=dataset.embedding_model                    )                    # calc embedding use tokens                    tokens = embedding_model.get_num_tokens(content)                segment.content = content                segment.index_node_hash = segment_hash                segment.word_count = len(content)                segment.tokens = tokens                segment.status = 'completed'                segment.indexing_at = datetime.datetime.utcnow()                segment.completed_at = datetime.datetime.utcnow()                segment.updated_by = current_user.id                segment.updated_at = datetime.datetime.utcnow()                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                db.session.add(segment)                db.session.commit()                # update segment vector index                VectorService.update_segment_vector(args['keywords'], segment, dataset)        except Exception as e:            logging.exception("update segment index failed")            segment.enabled = False            segment.disabled_at = datetime.datetime.utcnow()            segment.status = 'error'            segment.error = str(e)            db.session.commit()        segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()        return segment    @classmethod    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is deleting.")        # enabled segment need to delete index        if segment.enabled:            # send delete segment index task            redis_client.setex(indexing_cache_key, 600, 1)            delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)        db.session.delete(segment)        db.session.commit()class DatasetCollectionBindingService:    @classmethod    def get_dataset_collection_binding(cls, provider_name: str, model_name: str) -> DatasetCollectionBinding:        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \            filter(DatasetCollectionBinding.provider_name == provider_name,                   DatasetCollectionBinding.model_name == model_name). \            order_by(DatasetCollectionBinding.created_at). \            first()        if not dataset_collection_binding:            dataset_collection_binding = DatasetCollectionBinding(                provider_name=provider_name,                model_name=model_name,                collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node'            )            db.session.add(dataset_collection_binding)            db.session.flush()        return dataset_collection_binding
 |