非法操作 eee779a923 fix: the input field of tool panel not worked as expected (#6003) před 11 měsíci
..
configs 79df8825c8 Revert "feat: knowledge admin role" (#6018) před 11 měsíci
constants cddea83e65 6014 i18n add support for spanish (#6017) před 11 měsíci
controllers 79df8825c8 Revert "feat: knowledge admin role" (#6018) před 11 měsíci
core eee779a923 fix: the input field of tool panel not worked as expected (#6003) před 11 měsíci
docker cb09dbef66 feat: correctly delete applications using Celery workers (#5787) před 11 měsíci
events cb09dbef66 feat: correctly delete applications using Celery workers (#5787) před 11 měsíci
extensions 1d3e96ffa6 add support oracle oci object storage (#5616) před 11 měsíci
fields 4c0a31d38b FR: #4048 - Add color customization to the chatbot (#4885) před 1 rokem
libs 00b4cc3cd4 feat: implement forgot password feature (#5534) před 11 měsíci
migrations 79df8825c8 Revert "feat: knowledge admin role" (#6018) před 11 měsíci
models 79df8825c8 Revert "feat: knowledge admin role" (#6018) před 11 měsíci
schedule 6c4e6bf1d6 Feat/dify rag (#2528) před 1 rokem
services 79df8825c8 Revert "feat: knowledge admin role" (#6018) před 11 měsíci
tasks 00b4cc3cd4 feat: implement forgot password feature (#5534) před 11 měsíci
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) před 11 měsíci
tests b217ee414f test(test_rerank): Remove duplicate test cases. (#6024) před 11 měsíci
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) před 1 rokem
.env.example 1d3e96ffa6 add support oracle oci object storage (#5616) před 11 měsíci
Dockerfile 73ce945d40 Feat/add json process tool (#5555) před 1 rokem
README.md 2d6624cf9e typo: Update README.md (#5987) před 11 měsíci
app.py d7f75d17cc Chore/remove-unused-code (#5917) před 11 měsíci
commands.py cb8feb732f refactor: Create a `dify_config` with Pydantic. (#5938) před 11 měsíci
poetry.lock 71c50b7e20 feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) před 11 měsíci
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) před 1 rokem
pyproject.toml 71c50b7e20 feat: add Llama 3 and Mixtral model options to ddgo_ai.yaml (#5979) před 11 měsíci

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   docker compose -f docker-compose.middleware.yaml -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh