retrieval_service.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187
  1. import threading
  2. from typing import Optional
  3. from flask import Flask, current_app
  4. from core.rag.data_post_processor.data_post_processor import DataPostProcessor
  5. from core.rag.datasource.keyword.keyword_factory import Keyword
  6. from core.rag.datasource.vdb.vector_factory import Vector
  7. from extensions.ext_database import db
  8. from models.dataset import Dataset
  9. default_retrieval_model = {
  10. 'search_method': 'semantic_search',
  11. 'reranking_enable': False,
  12. 'reranking_model': {
  13. 'reranking_provider_name': '',
  14. 'reranking_model_name': ''
  15. },
  16. 'top_k': 2,
  17. 'score_threshold_enabled': False
  18. }
  19. class RetrievalService:
  20. @classmethod
  21. def retrieve(cls, retrival_method: str, dataset_id: str, query: str,
  22. top_k: int, score_threshold: Optional[float] = .0, reranking_model: Optional[dict] = None):
  23. dataset = db.session.query(Dataset).filter(
  24. Dataset.id == dataset_id
  25. ).first()
  26. if not dataset or dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  27. return []
  28. all_documents = []
  29. threads = []
  30. exceptions = []
  31. # retrieval_model source with keyword
  32. if retrival_method == 'keyword_search':
  33. keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
  34. 'flask_app': current_app._get_current_object(),
  35. 'dataset_id': dataset_id,
  36. 'query': query,
  37. 'top_k': top_k,
  38. 'all_documents': all_documents,
  39. 'exceptions': exceptions,
  40. })
  41. threads.append(keyword_thread)
  42. keyword_thread.start()
  43. # retrieval_model source with semantic
  44. if retrival_method == 'semantic_search' or retrival_method == 'hybrid_search':
  45. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  46. 'flask_app': current_app._get_current_object(),
  47. 'dataset_id': dataset_id,
  48. 'query': query,
  49. 'top_k': top_k,
  50. 'score_threshold': score_threshold,
  51. 'reranking_model': reranking_model,
  52. 'all_documents': all_documents,
  53. 'retrival_method': retrival_method,
  54. 'exceptions': exceptions,
  55. })
  56. threads.append(embedding_thread)
  57. embedding_thread.start()
  58. # retrieval source with full text
  59. if retrival_method == 'full_text_search' or retrival_method == 'hybrid_search':
  60. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  61. 'flask_app': current_app._get_current_object(),
  62. 'dataset_id': dataset_id,
  63. 'query': query,
  64. 'retrival_method': retrival_method,
  65. 'score_threshold': score_threshold,
  66. 'top_k': top_k,
  67. 'reranking_model': reranking_model,
  68. 'all_documents': all_documents,
  69. 'exceptions': exceptions,
  70. })
  71. threads.append(full_text_index_thread)
  72. full_text_index_thread.start()
  73. for thread in threads:
  74. thread.join()
  75. if exceptions:
  76. exception_message = ';\n'.join(exceptions)
  77. raise Exception(exception_message)
  78. if retrival_method == 'hybrid_search':
  79. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  80. all_documents = data_post_processor.invoke(
  81. query=query,
  82. documents=all_documents,
  83. score_threshold=score_threshold,
  84. top_n=top_k
  85. )
  86. return all_documents
  87. @classmethod
  88. def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
  89. top_k: int, all_documents: list, exceptions: list):
  90. with flask_app.app_context():
  91. try:
  92. dataset = db.session.query(Dataset).filter(
  93. Dataset.id == dataset_id
  94. ).first()
  95. keyword = Keyword(
  96. dataset=dataset
  97. )
  98. documents = keyword.search(
  99. query,
  100. top_k=top_k
  101. )
  102. all_documents.extend(documents)
  103. except Exception as e:
  104. exceptions.append(str(e))
  105. @classmethod
  106. def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
  107. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  108. all_documents: list, retrival_method: str, exceptions: list):
  109. with flask_app.app_context():
  110. try:
  111. dataset = db.session.query(Dataset).filter(
  112. Dataset.id == dataset_id
  113. ).first()
  114. vector = Vector(
  115. dataset=dataset
  116. )
  117. documents = vector.search_by_vector(
  118. query,
  119. search_type='similarity_score_threshold',
  120. top_k=top_k,
  121. score_threshold=score_threshold,
  122. filter={
  123. 'group_id': [dataset.id]
  124. }
  125. )
  126. if documents:
  127. if reranking_model and retrival_method == 'semantic_search':
  128. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  129. all_documents.extend(data_post_processor.invoke(
  130. query=query,
  131. documents=documents,
  132. score_threshold=score_threshold,
  133. top_n=len(documents)
  134. ))
  135. else:
  136. all_documents.extend(documents)
  137. except Exception as e:
  138. exceptions.append(str(e))
  139. @classmethod
  140. def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
  141. top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
  142. all_documents: list, retrival_method: str, exceptions: list):
  143. with flask_app.app_context():
  144. try:
  145. dataset = db.session.query(Dataset).filter(
  146. Dataset.id == dataset_id
  147. ).first()
  148. vector_processor = Vector(
  149. dataset=dataset,
  150. )
  151. documents = vector_processor.search_by_full_text(
  152. query,
  153. top_k=top_k
  154. )
  155. if documents:
  156. if reranking_model and retrival_method == 'full_text_search':
  157. data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
  158. all_documents.extend(data_post_processor.invoke(
  159. query=query,
  160. documents=documents,
  161. score_threshold=score_threshold,
  162. top_n=len(documents)
  163. ))
  164. else:
  165. all_documents.extend(documents)
  166. except Exception as e:
  167. exceptions.append(str(e))