dataset_service.py 53 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204
  1. import json
  2. import logging
  3. import datetime
  4. import time
  5. import random
  6. import uuid
  7. from typing import Optional, List
  8. from flask import current_app
  9. from sqlalchemy import func
  10. from core.index.index import IndexBuilder
  11. from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_providers.model_factory import ModelFactory
  13. from extensions.ext_redis import redis_client
  14. from flask_login import current_user
  15. from events.dataset_event import dataset_was_deleted
  16. from events.document_event import document_was_deleted
  17. from extensions.ext_database import db
  18. from libs import helper
  19. from models.account import Account
  20. from models.dataset import Dataset, Document, DatasetQuery, DatasetProcessRule, AppDatasetJoin, DocumentSegment, \
  21. DatasetCollectionBinding
  22. from models.model import UploadFile
  23. from models.source import DataSourceBinding
  24. from services.errors.account import NoPermissionError
  25. from services.errors.dataset import DatasetNameDuplicateError
  26. from services.errors.document import DocumentIndexingError
  27. from services.errors.file import FileNotExistsError
  28. from services.vector_service import VectorService
  29. from tasks.clean_notion_document_task import clean_notion_document_task
  30. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  31. from tasks.document_indexing_task import document_indexing_task
  32. from tasks.document_indexing_update_task import document_indexing_update_task
  33. from tasks.recover_document_indexing_task import recover_document_indexing_task
  34. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  35. class DatasetService:
  36. @staticmethod
  37. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  38. if user:
  39. permission_filter = db.or_(Dataset.created_by == user.id,
  40. Dataset.permission == 'all_team_members')
  41. else:
  42. permission_filter = Dataset.permission == 'all_team_members'
  43. datasets = Dataset.query.filter(
  44. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  45. .order_by(Dataset.created_at.desc()) \
  46. .paginate(
  47. page=page,
  48. per_page=per_page,
  49. max_per_page=100,
  50. error_out=False
  51. )
  52. return datasets.items, datasets.total
  53. @staticmethod
  54. def get_process_rules(dataset_id):
  55. # get the latest process rule
  56. dataset_process_rule = db.session.query(DatasetProcessRule). \
  57. filter(DatasetProcessRule.dataset_id == dataset_id). \
  58. order_by(DatasetProcessRule.created_at.desc()). \
  59. limit(1). \
  60. one_or_none()
  61. if dataset_process_rule:
  62. mode = dataset_process_rule.mode
  63. rules = dataset_process_rule.rules_dict
  64. else:
  65. mode = DocumentService.DEFAULT_RULES['mode']
  66. rules = DocumentService.DEFAULT_RULES['rules']
  67. return {
  68. 'mode': mode,
  69. 'rules': rules
  70. }
  71. @staticmethod
  72. def get_datasets_by_ids(ids, tenant_id):
  73. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  74. Dataset.tenant_id == tenant_id).paginate(
  75. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  76. return datasets.items, datasets.total
  77. @staticmethod
  78. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  79. # check if dataset name already exists
  80. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  81. raise DatasetNameDuplicateError(
  82. f'Dataset with name {name} already exists.')
  83. embedding_model = None
  84. if indexing_technique == 'high_quality':
  85. embedding_model = ModelFactory.get_embedding_model(
  86. tenant_id=tenant_id
  87. )
  88. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  89. # dataset = Dataset(name=name, provider=provider, config=config)
  90. dataset.created_by = account.id
  91. dataset.updated_by = account.id
  92. dataset.tenant_id = tenant_id
  93. dataset.embedding_model_provider = embedding_model.model_provider.provider_name if embedding_model else None
  94. dataset.embedding_model = embedding_model.name if embedding_model else None
  95. db.session.add(dataset)
  96. db.session.commit()
  97. return dataset
  98. @staticmethod
  99. def get_dataset(dataset_id):
  100. dataset = Dataset.query.filter_by(
  101. id=dataset_id
  102. ).first()
  103. if dataset is None:
  104. return None
  105. else:
  106. return dataset
  107. @staticmethod
  108. def check_dataset_model_setting(dataset):
  109. if dataset.indexing_technique == 'high_quality':
  110. try:
  111. ModelFactory.get_embedding_model(
  112. tenant_id=dataset.tenant_id,
  113. model_provider_name=dataset.embedding_model_provider,
  114. model_name=dataset.embedding_model
  115. )
  116. except LLMBadRequestError:
  117. raise ValueError(
  118. f"No Embedding Model available. Please configure a valid provider "
  119. f"in the Settings -> Model Provider.")
  120. except ProviderTokenNotInitError as ex:
  121. raise ValueError(f"The dataset in unavailable, due to: "
  122. f"{ex.description}")
  123. @staticmethod
  124. def update_dataset(dataset_id, data, user):
  125. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  126. dataset = DatasetService.get_dataset(dataset_id)
  127. DatasetService.check_dataset_permission(dataset, user)
  128. action = None
  129. if dataset.indexing_technique != data['indexing_technique']:
  130. # if update indexing_technique
  131. if data['indexing_technique'] == 'economy':
  132. action = 'remove'
  133. filtered_data['embedding_model'] = None
  134. filtered_data['embedding_model_provider'] = None
  135. filtered_data['collection_binding_id'] = None
  136. elif data['indexing_technique'] == 'high_quality':
  137. action = 'add'
  138. # get embedding model setting
  139. try:
  140. embedding_model = ModelFactory.get_embedding_model(
  141. tenant_id=current_user.current_tenant_id
  142. )
  143. filtered_data['embedding_model'] = embedding_model.name
  144. filtered_data['embedding_model_provider'] = embedding_model.model_provider.provider_name
  145. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  146. embedding_model.model_provider.provider_name,
  147. embedding_model.name
  148. )
  149. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  150. except LLMBadRequestError:
  151. raise ValueError(
  152. f"No Embedding Model available. Please configure a valid provider "
  153. f"in the Settings -> Model Provider.")
  154. except ProviderTokenNotInitError as ex:
  155. raise ValueError(ex.description)
  156. filtered_data['updated_by'] = user.id
  157. filtered_data['updated_at'] = datetime.datetime.now()
  158. # update Retrieval model
  159. filtered_data['retrieval_model'] = data['retrieval_model']
  160. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  161. db.session.commit()
  162. if action:
  163. deal_dataset_vector_index_task.delay(dataset_id, action)
  164. return dataset
  165. @staticmethod
  166. def delete_dataset(dataset_id, user):
  167. # todo: cannot delete dataset if it is being processed
  168. dataset = DatasetService.get_dataset(dataset_id)
  169. if dataset is None:
  170. return False
  171. DatasetService.check_dataset_permission(dataset, user)
  172. dataset_was_deleted.send(dataset)
  173. db.session.delete(dataset)
  174. db.session.commit()
  175. return True
  176. @staticmethod
  177. def check_dataset_permission(dataset, user):
  178. if dataset.tenant_id != user.current_tenant_id:
  179. logging.debug(
  180. f'User {user.id} does not have permission to access dataset {dataset.id}')
  181. raise NoPermissionError(
  182. 'You do not have permission to access this dataset.')
  183. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  184. logging.debug(
  185. f'User {user.id} does not have permission to access dataset {dataset.id}')
  186. raise NoPermissionError(
  187. 'You do not have permission to access this dataset.')
  188. @staticmethod
  189. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  190. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  191. .order_by(db.desc(DatasetQuery.created_at)) \
  192. .paginate(
  193. page=page, per_page=per_page, max_per_page=100, error_out=False
  194. )
  195. return dataset_queries.items, dataset_queries.total
  196. @staticmethod
  197. def get_related_apps(dataset_id: str):
  198. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  199. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  200. class DocumentService:
  201. DEFAULT_RULES = {
  202. 'mode': 'custom',
  203. 'rules': {
  204. 'pre_processing_rules': [
  205. {'id': 'remove_extra_spaces', 'enabled': True},
  206. {'id': 'remove_urls_emails', 'enabled': False}
  207. ],
  208. 'segmentation': {
  209. 'delimiter': '\n',
  210. 'max_tokens': 500
  211. }
  212. }
  213. }
  214. DOCUMENT_METADATA_SCHEMA = {
  215. "book": {
  216. "title": str,
  217. "language": str,
  218. "author": str,
  219. "publisher": str,
  220. "publication_date": str,
  221. "isbn": str,
  222. "category": str,
  223. },
  224. "web_page": {
  225. "title": str,
  226. "url": str,
  227. "language": str,
  228. "publish_date": str,
  229. "author/publisher": str,
  230. "topic/keywords": str,
  231. "description": str,
  232. },
  233. "paper": {
  234. "title": str,
  235. "language": str,
  236. "author": str,
  237. "publish_date": str,
  238. "journal/conference_name": str,
  239. "volume/issue/page_numbers": str,
  240. "doi": str,
  241. "topic/keywords": str,
  242. "abstract": str,
  243. },
  244. "social_media_post": {
  245. "platform": str,
  246. "author/username": str,
  247. "publish_date": str,
  248. "post_url": str,
  249. "topic/tags": str,
  250. },
  251. "wikipedia_entry": {
  252. "title": str,
  253. "language": str,
  254. "web_page_url": str,
  255. "last_edit_date": str,
  256. "editor/contributor": str,
  257. "summary/introduction": str,
  258. },
  259. "personal_document": {
  260. "title": str,
  261. "author": str,
  262. "creation_date": str,
  263. "last_modified_date": str,
  264. "document_type": str,
  265. "tags/category": str,
  266. },
  267. "business_document": {
  268. "title": str,
  269. "author": str,
  270. "creation_date": str,
  271. "last_modified_date": str,
  272. "document_type": str,
  273. "department/team": str,
  274. },
  275. "im_chat_log": {
  276. "chat_platform": str,
  277. "chat_participants/group_name": str,
  278. "start_date": str,
  279. "end_date": str,
  280. "summary": str,
  281. },
  282. "synced_from_notion": {
  283. "title": str,
  284. "language": str,
  285. "author/creator": str,
  286. "creation_date": str,
  287. "last_modified_date": str,
  288. "notion_page_link": str,
  289. "category/tags": str,
  290. "description": str,
  291. },
  292. "synced_from_github": {
  293. "repository_name": str,
  294. "repository_description": str,
  295. "repository_owner/organization": str,
  296. "code_filename": str,
  297. "code_file_path": str,
  298. "programming_language": str,
  299. "github_link": str,
  300. "open_source_license": str,
  301. "commit_date": str,
  302. "commit_author": str,
  303. },
  304. "others": dict
  305. }
  306. @staticmethod
  307. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  308. document = db.session.query(Document).filter(
  309. Document.id == document_id,
  310. Document.dataset_id == dataset_id
  311. ).first()
  312. return document
  313. @staticmethod
  314. def get_document_by_id(document_id: str) -> Optional[Document]:
  315. document = db.session.query(Document).filter(
  316. Document.id == document_id
  317. ).first()
  318. return document
  319. @staticmethod
  320. def get_document_by_dataset_id(dataset_id: str) -> List[Document]:
  321. documents = db.session.query(Document).filter(
  322. Document.dataset_id == dataset_id,
  323. Document.enabled == True
  324. ).all()
  325. return documents
  326. @staticmethod
  327. def get_batch_documents(dataset_id: str, batch: str) -> List[Document]:
  328. documents = db.session.query(Document).filter(
  329. Document.batch == batch,
  330. Document.dataset_id == dataset_id,
  331. Document.tenant_id == current_user.current_tenant_id
  332. ).all()
  333. return documents
  334. @staticmethod
  335. def get_document_file_detail(file_id: str):
  336. file_detail = db.session.query(UploadFile). \
  337. filter(UploadFile.id == file_id). \
  338. one_or_none()
  339. return file_detail
  340. @staticmethod
  341. def check_archived(document):
  342. if document.archived:
  343. return True
  344. else:
  345. return False
  346. @staticmethod
  347. def delete_document(document):
  348. # trigger document_was_deleted signal
  349. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  350. db.session.delete(document)
  351. db.session.commit()
  352. @staticmethod
  353. def pause_document(document):
  354. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  355. raise DocumentIndexingError()
  356. # update document to be paused
  357. document.is_paused = True
  358. document.paused_by = current_user.id
  359. document.paused_at = datetime.datetime.utcnow()
  360. db.session.add(document)
  361. db.session.commit()
  362. # set document paused flag
  363. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  364. redis_client.setnx(indexing_cache_key, "True")
  365. @staticmethod
  366. def recover_document(document):
  367. if not document.is_paused:
  368. raise DocumentIndexingError()
  369. # update document to be recover
  370. document.is_paused = False
  371. document.paused_by = None
  372. document.paused_at = None
  373. db.session.add(document)
  374. db.session.commit()
  375. # delete paused flag
  376. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  377. redis_client.delete(indexing_cache_key)
  378. # trigger async task
  379. recover_document_indexing_task.delay(document.dataset_id, document.id)
  380. @staticmethod
  381. def get_documents_position(dataset_id):
  382. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  383. if document:
  384. return document.position + 1
  385. else:
  386. return 1
  387. @staticmethod
  388. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  389. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  390. created_from: str = 'web'):
  391. # check document limit
  392. if current_app.config['EDITION'] == 'CLOUD':
  393. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  394. count = 0
  395. if document_data["data_source"]["type"] == "upload_file":
  396. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  397. count = len(upload_file_list)
  398. elif document_data["data_source"]["type"] == "notion_import":
  399. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  400. for notion_info in notion_info_list:
  401. count = count + len(notion_info['pages'])
  402. # if dataset is empty, update dataset data_source_type
  403. if not dataset.data_source_type:
  404. dataset.data_source_type = document_data["data_source"]["type"]
  405. if not dataset.indexing_technique:
  406. if 'indexing_technique' not in document_data \
  407. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  408. raise ValueError("Indexing technique is required")
  409. dataset.indexing_technique = document_data["indexing_technique"]
  410. if document_data["indexing_technique"] == 'high_quality':
  411. embedding_model = ModelFactory.get_embedding_model(
  412. tenant_id=dataset.tenant_id
  413. )
  414. dataset.embedding_model = embedding_model.name
  415. dataset.embedding_model_provider = embedding_model.model_provider.provider_name
  416. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  417. embedding_model.model_provider.provider_name,
  418. embedding_model.name
  419. )
  420. dataset.collection_binding_id = dataset_collection_binding.id
  421. if not dataset.retrieval_model:
  422. default_retrieval_model = {
  423. 'search_method': 'semantic_search',
  424. 'reranking_enable': False,
  425. 'reranking_model': {
  426. 'reranking_provider_name': '',
  427. 'reranking_model_name': ''
  428. },
  429. 'top_k': 2,
  430. 'score_threshold_enabled': False
  431. }
  432. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  433. 'retrieval_model') else default_retrieval_model
  434. documents = []
  435. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  436. if 'original_document_id' in document_data and document_data["original_document_id"]:
  437. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  438. documents.append(document)
  439. else:
  440. # save process rule
  441. if not dataset_process_rule:
  442. process_rule = document_data["process_rule"]
  443. if process_rule["mode"] == "custom":
  444. dataset_process_rule = DatasetProcessRule(
  445. dataset_id=dataset.id,
  446. mode=process_rule["mode"],
  447. rules=json.dumps(process_rule["rules"]),
  448. created_by=account.id
  449. )
  450. elif process_rule["mode"] == "automatic":
  451. dataset_process_rule = DatasetProcessRule(
  452. dataset_id=dataset.id,
  453. mode=process_rule["mode"],
  454. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  455. created_by=account.id
  456. )
  457. db.session.add(dataset_process_rule)
  458. db.session.commit()
  459. position = DocumentService.get_documents_position(dataset.id)
  460. document_ids = []
  461. if document_data["data_source"]["type"] == "upload_file":
  462. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  463. for file_id in upload_file_list:
  464. file = db.session.query(UploadFile).filter(
  465. UploadFile.tenant_id == dataset.tenant_id,
  466. UploadFile.id == file_id
  467. ).first()
  468. # raise error if file not found
  469. if not file:
  470. raise FileNotExistsError()
  471. file_name = file.name
  472. data_source_info = {
  473. "upload_file_id": file_id,
  474. }
  475. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  476. document_data["data_source"]["type"],
  477. document_data["doc_form"],
  478. document_data["doc_language"],
  479. data_source_info, created_from, position,
  480. account, file_name, batch)
  481. db.session.add(document)
  482. db.session.flush()
  483. document_ids.append(document.id)
  484. documents.append(document)
  485. position += 1
  486. elif document_data["data_source"]["type"] == "notion_import":
  487. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  488. exist_page_ids = []
  489. exist_document = dict()
  490. documents = Document.query.filter_by(
  491. dataset_id=dataset.id,
  492. tenant_id=current_user.current_tenant_id,
  493. data_source_type='notion_import',
  494. enabled=True
  495. ).all()
  496. if documents:
  497. for document in documents:
  498. data_source_info = json.loads(document.data_source_info)
  499. exist_page_ids.append(data_source_info['notion_page_id'])
  500. exist_document[data_source_info['notion_page_id']] = document.id
  501. for notion_info in notion_info_list:
  502. workspace_id = notion_info['workspace_id']
  503. data_source_binding = DataSourceBinding.query.filter(
  504. db.and_(
  505. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  506. DataSourceBinding.provider == 'notion',
  507. DataSourceBinding.disabled == False,
  508. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  509. )
  510. ).first()
  511. if not data_source_binding:
  512. raise ValueError('Data source binding not found.')
  513. for page in notion_info['pages']:
  514. if page['page_id'] not in exist_page_ids:
  515. data_source_info = {
  516. "notion_workspace_id": workspace_id,
  517. "notion_page_id": page['page_id'],
  518. "notion_page_icon": page['page_icon'],
  519. "type": page['type']
  520. }
  521. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  522. document_data["data_source"]["type"],
  523. document_data["doc_form"],
  524. document_data["doc_language"],
  525. data_source_info, created_from, position,
  526. account, page['page_name'], batch)
  527. db.session.add(document)
  528. db.session.flush()
  529. document_ids.append(document.id)
  530. documents.append(document)
  531. position += 1
  532. else:
  533. exist_document.pop(page['page_id'])
  534. # delete not selected documents
  535. if len(exist_document) > 0:
  536. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  537. db.session.commit()
  538. # trigger async task
  539. document_indexing_task.delay(dataset.id, document_ids)
  540. return documents, batch
  541. @staticmethod
  542. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  543. document_language: str, data_source_info: dict, created_from: str, position: int,
  544. account: Account,
  545. name: str, batch: str):
  546. document = Document(
  547. tenant_id=dataset.tenant_id,
  548. dataset_id=dataset.id,
  549. position=position,
  550. data_source_type=data_source_type,
  551. data_source_info=json.dumps(data_source_info),
  552. dataset_process_rule_id=process_rule_id,
  553. batch=batch,
  554. name=name,
  555. created_from=created_from,
  556. created_by=account.id,
  557. doc_form=document_form,
  558. doc_language=document_language
  559. )
  560. return document
  561. @staticmethod
  562. def get_tenant_documents_count():
  563. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  564. Document.enabled == True,
  565. Document.archived == False,
  566. Document.tenant_id == current_user.current_tenant_id).count()
  567. return documents_count
  568. @staticmethod
  569. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  570. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  571. created_from: str = 'web'):
  572. DatasetService.check_dataset_model_setting(dataset)
  573. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  574. if document.display_status != 'available':
  575. raise ValueError("Document is not available")
  576. # update document name
  577. if 'name' in document_data and document_data['name']:
  578. document.name = document_data['name']
  579. # save process rule
  580. if 'process_rule' in document_data and document_data['process_rule']:
  581. process_rule = document_data["process_rule"]
  582. if process_rule["mode"] == "custom":
  583. dataset_process_rule = DatasetProcessRule(
  584. dataset_id=dataset.id,
  585. mode=process_rule["mode"],
  586. rules=json.dumps(process_rule["rules"]),
  587. created_by=account.id
  588. )
  589. elif process_rule["mode"] == "automatic":
  590. dataset_process_rule = DatasetProcessRule(
  591. dataset_id=dataset.id,
  592. mode=process_rule["mode"],
  593. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  594. created_by=account.id
  595. )
  596. db.session.add(dataset_process_rule)
  597. db.session.commit()
  598. document.dataset_process_rule_id = dataset_process_rule.id
  599. # update document data source
  600. if 'data_source' in document_data and document_data['data_source']:
  601. file_name = ''
  602. data_source_info = {}
  603. if document_data["data_source"]["type"] == "upload_file":
  604. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  605. for file_id in upload_file_list:
  606. file = db.session.query(UploadFile).filter(
  607. UploadFile.tenant_id == dataset.tenant_id,
  608. UploadFile.id == file_id
  609. ).first()
  610. # raise error if file not found
  611. if not file:
  612. raise FileNotExistsError()
  613. file_name = file.name
  614. data_source_info = {
  615. "upload_file_id": file_id,
  616. }
  617. elif document_data["data_source"]["type"] == "notion_import":
  618. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  619. for notion_info in notion_info_list:
  620. workspace_id = notion_info['workspace_id']
  621. data_source_binding = DataSourceBinding.query.filter(
  622. db.and_(
  623. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  624. DataSourceBinding.provider == 'notion',
  625. DataSourceBinding.disabled == False,
  626. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  627. )
  628. ).first()
  629. if not data_source_binding:
  630. raise ValueError('Data source binding not found.')
  631. for page in notion_info['pages']:
  632. data_source_info = {
  633. "notion_workspace_id": workspace_id,
  634. "notion_page_id": page['page_id'],
  635. "notion_page_icon": page['page_icon'],
  636. "type": page['type']
  637. }
  638. document.data_source_type = document_data["data_source"]["type"]
  639. document.data_source_info = json.dumps(data_source_info)
  640. document.name = file_name
  641. # update document to be waiting
  642. document.indexing_status = 'waiting'
  643. document.completed_at = None
  644. document.processing_started_at = None
  645. document.parsing_completed_at = None
  646. document.cleaning_completed_at = None
  647. document.splitting_completed_at = None
  648. document.updated_at = datetime.datetime.utcnow()
  649. document.created_from = created_from
  650. document.doc_form = document_data['doc_form']
  651. db.session.add(document)
  652. db.session.commit()
  653. # update document segment
  654. update_params = {
  655. DocumentSegment.status: 're_segment'
  656. }
  657. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  658. db.session.commit()
  659. # trigger async task
  660. document_indexing_update_task.delay(document.dataset_id, document.id)
  661. return document
  662. @staticmethod
  663. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  664. count = 0
  665. if document_data["data_source"]["type"] == "upload_file":
  666. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  667. count = len(upload_file_list)
  668. elif document_data["data_source"]["type"] == "notion_import":
  669. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  670. for notion_info in notion_info_list:
  671. count = count + len(notion_info['pages'])
  672. embedding_model = None
  673. dataset_collection_binding_id = None
  674. retrieval_model = None
  675. if document_data['indexing_technique'] == 'high_quality':
  676. embedding_model = ModelFactory.get_embedding_model(
  677. tenant_id=tenant_id
  678. )
  679. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  680. embedding_model.model_provider.provider_name,
  681. embedding_model.name
  682. )
  683. dataset_collection_binding_id = dataset_collection_binding.id
  684. if 'retrieval_model' in document_data and document_data['retrieval_model']:
  685. retrieval_model = document_data['retrieval_model']
  686. else:
  687. default_retrieval_model = {
  688. 'search_method': 'semantic_search',
  689. 'reranking_enable': False,
  690. 'reranking_model': {
  691. 'reranking_provider_name': '',
  692. 'reranking_model_name': ''
  693. },
  694. 'top_k': 2,
  695. 'score_threshold_enabled': False
  696. }
  697. retrieval_model = default_retrieval_model
  698. # save dataset
  699. dataset = Dataset(
  700. tenant_id=tenant_id,
  701. name='',
  702. data_source_type=document_data["data_source"]["type"],
  703. indexing_technique=document_data["indexing_technique"],
  704. created_by=account.id,
  705. embedding_model=embedding_model.name if embedding_model else None,
  706. embedding_model_provider=embedding_model.model_provider.provider_name if embedding_model else None,
  707. collection_binding_id=dataset_collection_binding_id,
  708. retrieval_model=retrieval_model
  709. )
  710. db.session.add(dataset)
  711. db.session.flush()
  712. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  713. cut_length = 18
  714. cut_name = documents[0].name[:cut_length]
  715. dataset.name = cut_name + '...'
  716. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  717. db.session.commit()
  718. return dataset, documents, batch
  719. @classmethod
  720. def document_create_args_validate(cls, args: dict):
  721. if 'original_document_id' not in args or not args['original_document_id']:
  722. DocumentService.data_source_args_validate(args)
  723. DocumentService.process_rule_args_validate(args)
  724. else:
  725. if ('data_source' not in args and not args['data_source']) \
  726. and ('process_rule' not in args and not args['process_rule']):
  727. raise ValueError("Data source or Process rule is required")
  728. else:
  729. if 'data_source' in args and args['data_source']:
  730. DocumentService.data_source_args_validate(args)
  731. if 'process_rule' in args and args['process_rule']:
  732. DocumentService.process_rule_args_validate(args)
  733. @classmethod
  734. def data_source_args_validate(cls, args: dict):
  735. if 'data_source' not in args or not args['data_source']:
  736. raise ValueError("Data source is required")
  737. if not isinstance(args['data_source'], dict):
  738. raise ValueError("Data source is invalid")
  739. if 'type' not in args['data_source'] or not args['data_source']['type']:
  740. raise ValueError("Data source type is required")
  741. if args['data_source']['type'] not in Document.DATA_SOURCES:
  742. raise ValueError("Data source type is invalid")
  743. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  744. raise ValueError("Data source info is required")
  745. if args['data_source']['type'] == 'upload_file':
  746. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  747. 'file_info_list']:
  748. raise ValueError("File source info is required")
  749. if args['data_source']['type'] == 'notion_import':
  750. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  751. 'notion_info_list']:
  752. raise ValueError("Notion source info is required")
  753. @classmethod
  754. def process_rule_args_validate(cls, args: dict):
  755. if 'process_rule' not in args or not args['process_rule']:
  756. raise ValueError("Process rule is required")
  757. if not isinstance(args['process_rule'], dict):
  758. raise ValueError("Process rule is invalid")
  759. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  760. raise ValueError("Process rule mode is required")
  761. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  762. raise ValueError("Process rule mode is invalid")
  763. if args['process_rule']['mode'] == 'automatic':
  764. args['process_rule']['rules'] = {}
  765. else:
  766. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  767. raise ValueError("Process rule rules is required")
  768. if not isinstance(args['process_rule']['rules'], dict):
  769. raise ValueError("Process rule rules is invalid")
  770. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  771. or args['process_rule']['rules']['pre_processing_rules'] is None:
  772. raise ValueError("Process rule pre_processing_rules is required")
  773. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  774. raise ValueError("Process rule pre_processing_rules is invalid")
  775. unique_pre_processing_rule_dicts = {}
  776. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  777. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  778. raise ValueError("Process rule pre_processing_rules id is required")
  779. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  780. raise ValueError("Process rule pre_processing_rules id is invalid")
  781. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  782. raise ValueError("Process rule pre_processing_rules enabled is required")
  783. if not isinstance(pre_processing_rule['enabled'], bool):
  784. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  785. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  786. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  787. if 'segmentation' not in args['process_rule']['rules'] \
  788. or args['process_rule']['rules']['segmentation'] is None:
  789. raise ValueError("Process rule segmentation is required")
  790. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  791. raise ValueError("Process rule segmentation is invalid")
  792. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  793. or not args['process_rule']['rules']['segmentation']['separator']:
  794. raise ValueError("Process rule segmentation separator is required")
  795. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  796. raise ValueError("Process rule segmentation separator is invalid")
  797. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  798. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  799. raise ValueError("Process rule segmentation max_tokens is required")
  800. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  801. raise ValueError("Process rule segmentation max_tokens is invalid")
  802. @classmethod
  803. def estimate_args_validate(cls, args: dict):
  804. if 'info_list' not in args or not args['info_list']:
  805. raise ValueError("Data source info is required")
  806. if not isinstance(args['info_list'], dict):
  807. raise ValueError("Data info is invalid")
  808. if 'process_rule' not in args or not args['process_rule']:
  809. raise ValueError("Process rule is required")
  810. if not isinstance(args['process_rule'], dict):
  811. raise ValueError("Process rule is invalid")
  812. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  813. raise ValueError("Process rule mode is required")
  814. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  815. raise ValueError("Process rule mode is invalid")
  816. if args['process_rule']['mode'] == 'automatic':
  817. args['process_rule']['rules'] = {}
  818. else:
  819. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  820. raise ValueError("Process rule rules is required")
  821. if not isinstance(args['process_rule']['rules'], dict):
  822. raise ValueError("Process rule rules is invalid")
  823. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  824. or args['process_rule']['rules']['pre_processing_rules'] is None:
  825. raise ValueError("Process rule pre_processing_rules is required")
  826. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  827. raise ValueError("Process rule pre_processing_rules is invalid")
  828. unique_pre_processing_rule_dicts = {}
  829. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  830. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  831. raise ValueError("Process rule pre_processing_rules id is required")
  832. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  833. raise ValueError("Process rule pre_processing_rules id is invalid")
  834. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  835. raise ValueError("Process rule pre_processing_rules enabled is required")
  836. if not isinstance(pre_processing_rule['enabled'], bool):
  837. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  838. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  839. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  840. if 'segmentation' not in args['process_rule']['rules'] \
  841. or args['process_rule']['rules']['segmentation'] is None:
  842. raise ValueError("Process rule segmentation is required")
  843. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  844. raise ValueError("Process rule segmentation is invalid")
  845. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  846. or not args['process_rule']['rules']['segmentation']['separator']:
  847. raise ValueError("Process rule segmentation separator is required")
  848. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  849. raise ValueError("Process rule segmentation separator is invalid")
  850. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  851. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  852. raise ValueError("Process rule segmentation max_tokens is required")
  853. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  854. raise ValueError("Process rule segmentation max_tokens is invalid")
  855. class SegmentService:
  856. @classmethod
  857. def segment_create_args_validate(cls, args: dict, document: Document):
  858. if document.doc_form == 'qa_model':
  859. if 'answer' not in args or not args['answer']:
  860. raise ValueError("Answer is required")
  861. if not args['answer'].strip():
  862. raise ValueError("Answer is empty")
  863. if 'content' not in args or not args['content'] or not args['content'].strip():
  864. raise ValueError("Content is empty")
  865. @classmethod
  866. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  867. content = args['content']
  868. doc_id = str(uuid.uuid4())
  869. segment_hash = helper.generate_text_hash(content)
  870. tokens = 0
  871. if dataset.indexing_technique == 'high_quality':
  872. embedding_model = ModelFactory.get_embedding_model(
  873. tenant_id=dataset.tenant_id,
  874. model_provider_name=dataset.embedding_model_provider,
  875. model_name=dataset.embedding_model
  876. )
  877. # calc embedding use tokens
  878. tokens = embedding_model.get_num_tokens(content)
  879. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  880. DocumentSegment.document_id == document.id
  881. ).scalar()
  882. segment_document = DocumentSegment(
  883. tenant_id=current_user.current_tenant_id,
  884. dataset_id=document.dataset_id,
  885. document_id=document.id,
  886. index_node_id=doc_id,
  887. index_node_hash=segment_hash,
  888. position=max_position + 1 if max_position else 1,
  889. content=content,
  890. word_count=len(content),
  891. tokens=tokens,
  892. status='completed',
  893. indexing_at=datetime.datetime.utcnow(),
  894. completed_at=datetime.datetime.utcnow(),
  895. created_by=current_user.id
  896. )
  897. if document.doc_form == 'qa_model':
  898. segment_document.answer = args['answer']
  899. db.session.add(segment_document)
  900. db.session.commit()
  901. # save vector index
  902. try:
  903. VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
  904. except Exception as e:
  905. logging.exception("create segment index failed")
  906. segment_document.enabled = False
  907. segment_document.disabled_at = datetime.datetime.utcnow()
  908. segment_document.status = 'error'
  909. segment_document.error = str(e)
  910. db.session.commit()
  911. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  912. return segment
  913. @classmethod
  914. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  915. embedding_model = None
  916. if dataset.indexing_technique == 'high_quality':
  917. embedding_model = ModelFactory.get_embedding_model(
  918. tenant_id=dataset.tenant_id,
  919. model_provider_name=dataset.embedding_model_provider,
  920. model_name=dataset.embedding_model
  921. )
  922. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  923. DocumentSegment.document_id == document.id
  924. ).scalar()
  925. pre_segment_data_list = []
  926. segment_data_list = []
  927. for segment_item in segments:
  928. content = segment_item['content']
  929. doc_id = str(uuid.uuid4())
  930. segment_hash = helper.generate_text_hash(content)
  931. tokens = 0
  932. if dataset.indexing_technique == 'high_quality' and embedding_model:
  933. # calc embedding use tokens
  934. tokens = embedding_model.get_num_tokens(content)
  935. segment_document = DocumentSegment(
  936. tenant_id=current_user.current_tenant_id,
  937. dataset_id=document.dataset_id,
  938. document_id=document.id,
  939. index_node_id=doc_id,
  940. index_node_hash=segment_hash,
  941. position=max_position + 1 if max_position else 1,
  942. content=content,
  943. word_count=len(content),
  944. tokens=tokens,
  945. status='completed',
  946. indexing_at=datetime.datetime.utcnow(),
  947. completed_at=datetime.datetime.utcnow(),
  948. created_by=current_user.id
  949. )
  950. if document.doc_form == 'qa_model':
  951. segment_document.answer = segment_item['answer']
  952. db.session.add(segment_document)
  953. segment_data_list.append(segment_document)
  954. pre_segment_data = {
  955. 'segment': segment_document,
  956. 'keywords': segment_item['keywords']
  957. }
  958. pre_segment_data_list.append(pre_segment_data)
  959. try:
  960. # save vector index
  961. VectorService.multi_create_segment_vector(pre_segment_data_list, dataset)
  962. except Exception as e:
  963. logging.exception("create segment index failed")
  964. for segment_document in segment_data_list:
  965. segment_document.enabled = False
  966. segment_document.disabled_at = datetime.datetime.utcnow()
  967. segment_document.status = 'error'
  968. segment_document.error = str(e)
  969. db.session.commit()
  970. return segment_data_list
  971. @classmethod
  972. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  973. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  974. cache_result = redis_client.get(indexing_cache_key)
  975. if cache_result is not None:
  976. raise ValueError("Segment is indexing, please try again later")
  977. try:
  978. content = args['content']
  979. if segment.content == content:
  980. if document.doc_form == 'qa_model':
  981. segment.answer = args['answer']
  982. if 'keywords' in args and args['keywords']:
  983. segment.keywords = args['keywords']
  984. if'enabled' in args and args['enabled'] is not None:
  985. segment.enabled = args['enabled']
  986. db.session.add(segment)
  987. db.session.commit()
  988. # update segment index task
  989. if args['keywords']:
  990. kw_index = IndexBuilder.get_index(dataset, 'economy')
  991. # delete from keyword index
  992. kw_index.delete_by_ids([segment.index_node_id])
  993. # save keyword index
  994. kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
  995. else:
  996. segment_hash = helper.generate_text_hash(content)
  997. tokens = 0
  998. if dataset.indexing_technique == 'high_quality':
  999. embedding_model = ModelFactory.get_embedding_model(
  1000. tenant_id=dataset.tenant_id,
  1001. model_provider_name=dataset.embedding_model_provider,
  1002. model_name=dataset.embedding_model
  1003. )
  1004. # calc embedding use tokens
  1005. tokens = embedding_model.get_num_tokens(content)
  1006. segment.content = content
  1007. segment.index_node_hash = segment_hash
  1008. segment.word_count = len(content)
  1009. segment.tokens = tokens
  1010. segment.status = 'completed'
  1011. segment.indexing_at = datetime.datetime.utcnow()
  1012. segment.completed_at = datetime.datetime.utcnow()
  1013. segment.updated_by = current_user.id
  1014. segment.updated_at = datetime.datetime.utcnow()
  1015. if document.doc_form == 'qa_model':
  1016. segment.answer = args['answer']
  1017. db.session.add(segment)
  1018. db.session.commit()
  1019. # update segment vector index
  1020. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1021. except Exception as e:
  1022. logging.exception("update segment index failed")
  1023. segment.enabled = False
  1024. segment.disabled_at = datetime.datetime.utcnow()
  1025. segment.status = 'error'
  1026. segment.error = str(e)
  1027. db.session.commit()
  1028. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1029. return segment
  1030. @classmethod
  1031. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1032. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1033. cache_result = redis_client.get(indexing_cache_key)
  1034. if cache_result is not None:
  1035. raise ValueError("Segment is deleting.")
  1036. # enabled segment need to delete index
  1037. if segment.enabled:
  1038. # send delete segment index task
  1039. redis_client.setex(indexing_cache_key, 600, 1)
  1040. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1041. db.session.delete(segment)
  1042. db.session.commit()
  1043. class DatasetCollectionBindingService:
  1044. @classmethod
  1045. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1046. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1047. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1048. filter(DatasetCollectionBinding.provider_name == provider_name,
  1049. DatasetCollectionBinding.model_name == model_name,
  1050. DatasetCollectionBinding.type == collection_type). \
  1051. order_by(DatasetCollectionBinding.created_at). \
  1052. first()
  1053. if not dataset_collection_binding:
  1054. dataset_collection_binding = DatasetCollectionBinding(
  1055. provider_name=provider_name,
  1056. model_name=model_name,
  1057. collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node',
  1058. type=collection_type
  1059. )
  1060. db.session.add(dataset_collection_binding)
  1061. db.session.commit()
  1062. return dataset_collection_binding
  1063. @classmethod
  1064. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1065. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1066. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1067. filter(DatasetCollectionBinding.id == collection_binding_id,
  1068. DatasetCollectionBinding.type == collection_type). \
  1069. order_by(DatasetCollectionBinding.created_at). \
  1070. first()
  1071. return dataset_collection_binding