123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515 |
- import threading
- from typing import Optional, cast
- from flask import Flask, current_app
- from core.app.app_config.entities import DatasetEntity, DatasetRetrieveConfigEntity
- from core.app.entities.app_invoke_entities import InvokeFrom, ModelConfigWithCredentialsEntity
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
- from core.entities.agent_entities import PlanningStrategy
- from core.memory.token_buffer_memory import TokenBufferMemory
- from core.model_manager import ModelInstance, ModelManager
- from core.model_runtime.entities.message_entities import PromptMessageTool
- from core.model_runtime.entities.model_entities import ModelFeature, ModelType
- from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
- from core.ops.ops_trace_manager import TraceQueueManager, TraceTask, TraceTaskName
- from core.ops.utils import measure_time
- from core.rag.datasource.retrieval_service import RetrievalService
- from core.rag.models.document import Document
- from core.rag.rerank.rerank import RerankRunner
- from core.rag.retrieval.retrival_methods import RetrievalMethod
- from core.rag.retrieval.router.multi_dataset_function_call_router import FunctionCallMultiDatasetRouter
- from core.rag.retrieval.router.multi_dataset_react_route import ReactMultiDatasetRouter
- from core.tools.tool.dataset_retriever.dataset_multi_retriever_tool import DatasetMultiRetrieverTool
- from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
- from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
- from extensions.ext_database import db
- from models.dataset import Dataset, DatasetQuery, DocumentSegment
- from models.dataset import Document as DatasetDocument
- default_retrieval_model = {
- 'search_method': RetrievalMethod.SEMANTIC_SEARCH,
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- class DatasetRetrieval:
- def __init__(self, application_generate_entity=None):
- self.application_generate_entity = application_generate_entity
- def retrieve(
- self, app_id: str, user_id: str, tenant_id: str,
- model_config: ModelConfigWithCredentialsEntity,
- config: DatasetEntity,
- query: str,
- invoke_from: InvokeFrom,
- show_retrieve_source: bool,
- hit_callback: DatasetIndexToolCallbackHandler,
- message_id: str,
- memory: Optional[TokenBufferMemory] = None,
- ) -> Optional[str]:
- """
- Retrieve dataset.
- :param app_id: app_id
- :param user_id: user_id
- :param tenant_id: tenant id
- :param model_config: model config
- :param config: dataset config
- :param query: query
- :param invoke_from: invoke from
- :param show_retrieve_source: show retrieve source
- :param hit_callback: hit callback
- :param message_id: message id
- :param memory: memory
- :return:
- """
- dataset_ids = config.dataset_ids
- if len(dataset_ids) == 0:
- return None
- retrieve_config = config.retrieve_config
- # check model is support tool calling
- model_type_instance = model_config.provider_model_bundle.model_type_instance
- model_type_instance = cast(LargeLanguageModel, model_type_instance)
- model_manager = ModelManager()
- model_instance = model_manager.get_model_instance(
- tenant_id=tenant_id,
- model_type=ModelType.LLM,
- provider=model_config.provider,
- model=model_config.model
- )
- # get model schema
- model_schema = model_type_instance.get_model_schema(
- model=model_config.model,
- credentials=model_config.credentials
- )
- if not model_schema:
- return None
- planning_strategy = PlanningStrategy.REACT_ROUTER
- features = model_schema.features
- if features:
- if ModelFeature.TOOL_CALL in features \
- or ModelFeature.MULTI_TOOL_CALL in features:
- planning_strategy = PlanningStrategy.ROUTER
- available_datasets = []
- for dataset_id in dataset_ids:
- # get dataset from dataset id
- dataset = db.session.query(Dataset).filter(
- Dataset.tenant_id == tenant_id,
- Dataset.id == dataset_id
- ).first()
- # pass if dataset is not available
- if not dataset:
- continue
- # pass if dataset is not available
- if (dataset and dataset.available_document_count == 0
- and dataset.available_document_count == 0):
- continue
- available_datasets.append(dataset)
- all_documents = []
- user_from = 'account' if invoke_from in [InvokeFrom.EXPLORE, InvokeFrom.DEBUGGER] else 'end_user'
- if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
- all_documents = self.single_retrieve(
- app_id, tenant_id, user_id, user_from, available_datasets, query,
- model_instance,
- model_config, planning_strategy, message_id
- )
- elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
- all_documents = self.multiple_retrieve(
- app_id, tenant_id, user_id, user_from,
- available_datasets, query, retrieve_config.top_k,
- retrieve_config.score_threshold,
- retrieve_config.reranking_model.get('reranking_provider_name'),
- retrieve_config.reranking_model.get('reranking_model_name'),
- message_id,
- )
- document_score_list = {}
- for item in all_documents:
- if item.metadata.get('score'):
- document_score_list[item.metadata['doc_id']] = item.metadata['score']
- document_context_list = []
- index_node_ids = [document.metadata['doc_id'] for document in all_documents]
- segments = DocumentSegment.query.filter(
- DocumentSegment.dataset_id.in_(dataset_ids),
- DocumentSegment.completed_at.isnot(None),
- DocumentSegment.status == 'completed',
- DocumentSegment.enabled == True,
- DocumentSegment.index_node_id.in_(index_node_ids)
- ).all()
- if segments:
- index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
- sorted_segments = sorted(segments,
- key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
- float('inf')))
- for segment in sorted_segments:
- if segment.answer:
- document_context_list.append(f'question:{segment.get_sign_content()} answer:{segment.answer}')
- else:
- document_context_list.append(segment.get_sign_content())
- if show_retrieve_source:
- context_list = []
- resource_number = 1
- for segment in sorted_segments:
- dataset = Dataset.query.filter_by(
- id=segment.dataset_id
- ).first()
- document = DatasetDocument.query.filter(DatasetDocument.id == segment.document_id,
- DatasetDocument.enabled == True,
- DatasetDocument.archived == False,
- ).first()
- if dataset and document:
- source = {
- 'position': resource_number,
- 'dataset_id': dataset.id,
- 'dataset_name': dataset.name,
- 'document_id': document.id,
- 'document_name': document.name,
- 'data_source_type': document.data_source_type,
- 'segment_id': segment.id,
- 'retriever_from': invoke_from.to_source(),
- 'score': document_score_list.get(segment.index_node_id, None)
- }
- if invoke_from.to_source() == 'dev':
- source['hit_count'] = segment.hit_count
- source['word_count'] = segment.word_count
- source['segment_position'] = segment.position
- source['index_node_hash'] = segment.index_node_hash
- if segment.answer:
- source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
- else:
- source['content'] = segment.content
- context_list.append(source)
- resource_number += 1
- if hit_callback:
- hit_callback.return_retriever_resource_info(context_list)
- return str("\n".join(document_context_list))
- return ''
- def single_retrieve(
- self, app_id: str,
- tenant_id: str,
- user_id: str,
- user_from: str,
- available_datasets: list,
- query: str,
- model_instance: ModelInstance,
- model_config: ModelConfigWithCredentialsEntity,
- planning_strategy: PlanningStrategy,
- message_id: Optional[str] = None,
- ):
- tools = []
- for dataset in available_datasets:
- description = dataset.description
- if not description:
- description = 'useful for when you want to answer queries about the ' + dataset.name
- description = description.replace('\n', '').replace('\r', '')
- message_tool = PromptMessageTool(
- name=dataset.id,
- description=description,
- parameters={
- "type": "object",
- "properties": {},
- "required": [],
- }
- )
- tools.append(message_tool)
- dataset_id = None
- if planning_strategy == PlanningStrategy.REACT_ROUTER:
- react_multi_dataset_router = ReactMultiDatasetRouter()
- dataset_id = react_multi_dataset_router.invoke(query, tools, model_config, model_instance,
- user_id, tenant_id)
- elif planning_strategy == PlanningStrategy.ROUTER:
- function_call_router = FunctionCallMultiDatasetRouter()
- dataset_id = function_call_router.invoke(query, tools, model_config, model_instance)
- if dataset_id:
- # get retrieval model config
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- if dataset:
- retrieval_model_config = dataset.retrieval_model \
- if dataset.retrieval_model else default_retrieval_model
- # get top k
- top_k = retrieval_model_config['top_k']
- # get retrieval method
- if dataset.indexing_technique == "economy":
- retrival_method = 'keyword_search'
- else:
- retrival_method = retrieval_model_config['search_method']
- # get reranking model
- reranking_model = retrieval_model_config['reranking_model'] \
- if retrieval_model_config['reranking_enable'] else None
- # get score threshold
- score_threshold = .0
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
- if score_threshold_enabled:
- score_threshold = retrieval_model_config.get("score_threshold")
- with measure_time() as timer:
- results = RetrievalService.retrieve(
- retrival_method=retrival_method, dataset_id=dataset.id,
- query=query,
- top_k=top_k, score_threshold=score_threshold,
- reranking_model=reranking_model
- )
- self._on_query(query, [dataset_id], app_id, user_from, user_id)
- if results:
- self._on_retrival_end(results, message_id, timer)
- return results
- return []
- def multiple_retrieve(
- self,
- app_id: str,
- tenant_id: str,
- user_id: str,
- user_from: str,
- available_datasets: list,
- query: str,
- top_k: int,
- score_threshold: float,
- reranking_provider_name: str,
- reranking_model_name: str,
- message_id: Optional[str] = None,
- ):
- threads = []
- all_documents = []
- dataset_ids = [dataset.id for dataset in available_datasets]
- for dataset in available_datasets:
- retrieval_thread = threading.Thread(target=self._retriever, kwargs={
- 'flask_app': current_app._get_current_object(),
- 'dataset_id': dataset.id,
- 'query': query,
- 'top_k': top_k,
- 'all_documents': all_documents,
- })
- threads.append(retrieval_thread)
- retrieval_thread.start()
- for thread in threads:
- thread.join()
- # do rerank for searched documents
- model_manager = ModelManager()
- rerank_model_instance = model_manager.get_model_instance(
- tenant_id=tenant_id,
- provider=reranking_provider_name,
- model_type=ModelType.RERANK,
- model=reranking_model_name
- )
- rerank_runner = RerankRunner(rerank_model_instance)
- with measure_time() as timer:
- all_documents = rerank_runner.run(
- query, all_documents,
- score_threshold,
- top_k
- )
- self._on_query(query, dataset_ids, app_id, user_from, user_id)
- if all_documents:
- self._on_retrival_end(all_documents, message_id, timer)
- return all_documents
- def _on_retrival_end(
- self, documents: list[Document], message_id: Optional[str] = None, timer: Optional[dict] = None
- ) -> None:
- """Handle retrival end."""
- for document in documents:
- query = db.session.query(DocumentSegment).filter(
- DocumentSegment.index_node_id == document.metadata['doc_id']
- )
- # if 'dataset_id' in document.metadata:
- if 'dataset_id' in document.metadata:
- query = query.filter(DocumentSegment.dataset_id == document.metadata['dataset_id'])
- # add hit count to document segment
- query.update(
- {DocumentSegment.hit_count: DocumentSegment.hit_count + 1},
- synchronize_session=False
- )
- db.session.commit()
- # get tracing instance
- trace_manager: TraceQueueManager = self.application_generate_entity.trace_manager if self.application_generate_entity else None
- if trace_manager:
- trace_manager.add_trace_task(
- TraceTask(
- TraceTaskName.DATASET_RETRIEVAL_TRACE,
- message_id=message_id,
- documents=documents,
- timer=timer
- )
- )
- def _on_query(self, query: str, dataset_ids: list[str], app_id: str, user_from: str, user_id: str) -> None:
- """
- Handle query.
- """
- if not query:
- return
- dataset_queries = []
- for dataset_id in dataset_ids:
- dataset_query = DatasetQuery(
- dataset_id=dataset_id,
- content=query,
- source='app',
- source_app_id=app_id,
- created_by_role=user_from,
- created_by=user_id
- )
- dataset_queries.append(dataset_query)
- if dataset_queries:
- db.session.add_all(dataset_queries)
- db.session.commit()
- def _retriever(self, flask_app: Flask, dataset_id: str, query: str, top_k: int, all_documents: list):
- with flask_app.app_context():
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- if not dataset:
- return []
- # get retrieval model , if the model is not setting , using default
- retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
- if dataset.indexing_technique == "economy":
- # use keyword table query
- documents = RetrievalService.retrieve(retrival_method='keyword_search',
- dataset_id=dataset.id,
- query=query,
- top_k=top_k
- )
- if documents:
- all_documents.extend(documents)
- else:
- if top_k > 0:
- # retrieval source
- documents = RetrievalService.retrieve(retrival_method=retrieval_model['search_method'],
- dataset_id=dataset.id,
- query=query,
- top_k=top_k,
- score_threshold=retrieval_model['score_threshold']
- if retrieval_model['score_threshold_enabled'] else None,
- reranking_model=retrieval_model['reranking_model']
- if retrieval_model['reranking_enable'] else None
- )
- all_documents.extend(documents)
- def to_dataset_retriever_tool(self, tenant_id: str,
- dataset_ids: list[str],
- retrieve_config: DatasetRetrieveConfigEntity,
- return_resource: bool,
- invoke_from: InvokeFrom,
- hit_callback: DatasetIndexToolCallbackHandler) \
- -> Optional[list[DatasetRetrieverBaseTool]]:
- """
- A dataset tool is a tool that can be used to retrieve information from a dataset
- :param tenant_id: tenant id
- :param dataset_ids: dataset ids
- :param retrieve_config: retrieve config
- :param return_resource: return resource
- :param invoke_from: invoke from
- :param hit_callback: hit callback
- """
- tools = []
- available_datasets = []
- for dataset_id in dataset_ids:
- # get dataset from dataset id
- dataset = db.session.query(Dataset).filter(
- Dataset.tenant_id == tenant_id,
- Dataset.id == dataset_id
- ).first()
- # pass if dataset is not available
- if not dataset:
- continue
- # pass if dataset is not available
- if (dataset and dataset.available_document_count == 0
- and dataset.available_document_count == 0):
- continue
- available_datasets.append(dataset)
- if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE:
- # get retrieval model config
- default_retrieval_model = {
- 'search_method': RetrievalMethod.SEMANTIC_SEARCH,
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- for dataset in available_datasets:
- retrieval_model_config = dataset.retrieval_model \
- if dataset.retrieval_model else default_retrieval_model
- # get top k
- top_k = retrieval_model_config['top_k']
- # get score threshold
- score_threshold = None
- score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
- if score_threshold_enabled:
- score_threshold = retrieval_model_config.get("score_threshold")
- tool = DatasetRetrieverTool.from_dataset(
- dataset=dataset,
- top_k=top_k,
- score_threshold=score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source()
- )
- tools.append(tool)
- elif retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE:
- tool = DatasetMultiRetrieverTool.from_dataset(
- dataset_ids=[dataset.id for dataset in available_datasets],
- tenant_id=tenant_id,
- top_k=retrieve_config.top_k or 2,
- score_threshold=retrieve_config.score_threshold,
- hit_callbacks=[hit_callback],
- return_resource=return_resource,
- retriever_from=invoke_from.to_source(),
- reranking_provider_name=retrieve_config.reranking_model.get('reranking_provider_name'),
- reranking_model_name=retrieve_config.reranking_model.get('reranking_model_name')
- )
- tools.append(tool)
- return tools
|