vector_service.py 3.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394
  1. from typing import Optional
  2. from langchain.schema import Document
  3. from core.index.index import IndexBuilder
  4. from models.dataset import Dataset, DocumentSegment
  5. class VectorService:
  6. @classmethod
  7. def create_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
  8. document = Document(
  9. page_content=segment.content,
  10. metadata={
  11. "doc_id": segment.index_node_id,
  12. "doc_hash": segment.index_node_hash,
  13. "document_id": segment.document_id,
  14. "dataset_id": segment.dataset_id,
  15. }
  16. )
  17. # save vector index
  18. index = IndexBuilder.get_index(dataset, 'high_quality')
  19. if index:
  20. index.add_texts([document], duplicate_check=True)
  21. # save keyword index
  22. index = IndexBuilder.get_index(dataset, 'economy')
  23. if index:
  24. if keywords and len(keywords) > 0:
  25. index.create_segment_keywords(segment.index_node_id, keywords)
  26. else:
  27. index.add_texts([document])
  28. @classmethod
  29. def multi_create_segment_vector(cls, pre_segment_data_list: list, dataset: Dataset):
  30. documents = []
  31. for pre_segment_data in pre_segment_data_list:
  32. segment = pre_segment_data['segment']
  33. document = Document(
  34. page_content=segment.content,
  35. metadata={
  36. "doc_id": segment.index_node_id,
  37. "doc_hash": segment.index_node_hash,
  38. "document_id": segment.document_id,
  39. "dataset_id": segment.dataset_id,
  40. }
  41. )
  42. documents.append(document)
  43. # save vector index
  44. index = IndexBuilder.get_index(dataset, 'high_quality')
  45. if index:
  46. index.add_texts(documents, duplicate_check=True)
  47. # save keyword index
  48. keyword_index = IndexBuilder.get_index(dataset, 'economy')
  49. if keyword_index:
  50. keyword_index.multi_create_segment_keywords(pre_segment_data_list)
  51. @classmethod
  52. def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
  53. # update segment index task
  54. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  55. kw_index = IndexBuilder.get_index(dataset, 'economy')
  56. # delete from vector index
  57. if vector_index:
  58. vector_index.delete_by_ids([segment.index_node_id])
  59. # delete from keyword index
  60. kw_index.delete_by_ids([segment.index_node_id])
  61. # add new index
  62. document = Document(
  63. page_content=segment.content,
  64. metadata={
  65. "doc_id": segment.index_node_id,
  66. "doc_hash": segment.index_node_hash,
  67. "document_id": segment.document_id,
  68. "dataset_id": segment.dataset_id,
  69. }
  70. )
  71. # save vector index
  72. if vector_index:
  73. vector_index.add_texts([document], duplicate_check=True)
  74. # save keyword index
  75. if keywords and len(keywords) > 0:
  76. kw_index.create_segment_keywords(segment.index_node_id, keywords)
  77. else:
  78. kw_index.add_texts([document])