123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119 |
- from typing import Optional
- from flask import Flask, current_app
- from langchain.embeddings.base import Embeddings
- from core.index.vector_index.vector_index import VectorIndex
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from core.model_runtime.errors.invoke import InvokeAuthorizationError
- from core.rerank.rerank import RerankRunner
- from extensions.ext_database import db
- from models.dataset import Dataset
- default_retrieval_model = {
- 'search_method': 'semantic_search',
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- class RetrievalService:
- @classmethod
- def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
- top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
- all_documents: list, search_method: str, embeddings: Embeddings):
- with flask_app.app_context():
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- vector_index = VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
- documents = vector_index.search(
- query,
- search_type='similarity_score_threshold',
- search_kwargs={
- 'k': top_k,
- 'score_threshold': score_threshold,
- 'filter': {
- 'group_id': [dataset.id]
- }
- }
- )
- if documents:
- if reranking_model and search_method == 'semantic_search':
- try:
- model_manager = ModelManager()
- rerank_model_instance = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=reranking_model['reranking_provider_name'],
- model_type=ModelType.RERANK,
- model=reranking_model['reranking_model_name']
- )
- except InvokeAuthorizationError:
- return
- rerank_runner = RerankRunner(rerank_model_instance)
- all_documents.extend(rerank_runner.run(
- query=query,
- documents=documents,
- score_threshold=score_threshold,
- top_n=len(documents)
- ))
- else:
- all_documents.extend(documents)
- @classmethod
- def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
- top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
- all_documents: list, search_method: str, embeddings: Embeddings):
- with flask_app.app_context():
- dataset = db.session.query(Dataset).filter(
- Dataset.id == dataset_id
- ).first()
- vector_index = VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
- documents = vector_index.search_by_full_text_index(
- query,
- search_type='similarity_score_threshold',
- top_k=top_k
- )
- if documents:
- if reranking_model and search_method == 'full_text_search':
- try:
- model_manager = ModelManager()
- rerank_model_instance = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- provider=reranking_model['reranking_provider_name'],
- model_type=ModelType.RERANK,
- model=reranking_model['reranking_model_name']
- )
- except InvokeAuthorizationError:
- return
- rerank_runner = RerankRunner(rerank_model_instance)
- all_documents.extend(rerank_runner.run(
- query=query,
- documents=documents,
- score_threshold=score_threshold,
- top_n=len(documents)
- ))
- else:
- all_documents.extend(documents)
|