dataset_service.py 55 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional, cast
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.index.index import IndexBuilder
  13. from core.model_manager import ModelManager
  14. from core.model_runtime.entities.model_entities import ModelType
  15. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  16. from events.dataset_event import dataset_was_deleted
  17. from events.document_event import document_was_deleted
  18. from extensions.ext_database import db
  19. from extensions.ext_redis import redis_client
  20. from libs import helper
  21. from models.account import Account
  22. from models.dataset import (
  23. AppDatasetJoin,
  24. Dataset,
  25. DatasetCollectionBinding,
  26. DatasetProcessRule,
  27. DatasetQuery,
  28. Document,
  29. DocumentSegment,
  30. )
  31. from models.model import UploadFile
  32. from models.source import DataSourceBinding
  33. from services.errors.account import NoPermissionError
  34. from services.errors.dataset import DatasetNameDuplicateError
  35. from services.errors.document import DocumentIndexingError
  36. from services.errors.file import FileNotExistsError
  37. from services.vector_service import VectorService
  38. from tasks.clean_notion_document_task import clean_notion_document_task
  39. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  40. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  41. from tasks.document_indexing_task import document_indexing_task
  42. from tasks.document_indexing_update_task import document_indexing_update_task
  43. from tasks.recover_document_indexing_task import recover_document_indexing_task
  44. class DatasetService:
  45. @staticmethod
  46. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None):
  47. if user:
  48. permission_filter = db.or_(Dataset.created_by == user.id,
  49. Dataset.permission == 'all_team_members')
  50. else:
  51. permission_filter = Dataset.permission == 'all_team_members'
  52. datasets = Dataset.query.filter(
  53. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  54. .order_by(Dataset.created_at.desc()) \
  55. .paginate(
  56. page=page,
  57. per_page=per_page,
  58. max_per_page=100,
  59. error_out=False
  60. )
  61. return datasets.items, datasets.total
  62. @staticmethod
  63. def get_process_rules(dataset_id):
  64. # get the latest process rule
  65. dataset_process_rule = db.session.query(DatasetProcessRule). \
  66. filter(DatasetProcessRule.dataset_id == dataset_id). \
  67. order_by(DatasetProcessRule.created_at.desc()). \
  68. limit(1). \
  69. one_or_none()
  70. if dataset_process_rule:
  71. mode = dataset_process_rule.mode
  72. rules = dataset_process_rule.rules_dict
  73. else:
  74. mode = DocumentService.DEFAULT_RULES['mode']
  75. rules = DocumentService.DEFAULT_RULES['rules']
  76. return {
  77. 'mode': mode,
  78. 'rules': rules
  79. }
  80. @staticmethod
  81. def get_datasets_by_ids(ids, tenant_id):
  82. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  83. Dataset.tenant_id == tenant_id).paginate(
  84. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  85. return datasets.items, datasets.total
  86. @staticmethod
  87. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  88. # check if dataset name already exists
  89. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  90. raise DatasetNameDuplicateError(
  91. f'Dataset with name {name} already exists.')
  92. embedding_model = None
  93. if indexing_technique == 'high_quality':
  94. model_manager = ModelManager()
  95. embedding_model = model_manager.get_default_model_instance(
  96. tenant_id=tenant_id,
  97. model_type=ModelType.TEXT_EMBEDDING
  98. )
  99. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  100. # dataset = Dataset(name=name, provider=provider, config=config)
  101. dataset.created_by = account.id
  102. dataset.updated_by = account.id
  103. dataset.tenant_id = tenant_id
  104. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  105. dataset.embedding_model = embedding_model.model if embedding_model else None
  106. db.session.add(dataset)
  107. db.session.commit()
  108. return dataset
  109. @staticmethod
  110. def get_dataset(dataset_id):
  111. dataset = Dataset.query.filter_by(
  112. id=dataset_id
  113. ).first()
  114. if dataset is None:
  115. return None
  116. else:
  117. return dataset
  118. @staticmethod
  119. def check_dataset_model_setting(dataset):
  120. if dataset.indexing_technique == 'high_quality':
  121. try:
  122. model_manager = ModelManager()
  123. model_manager.get_model_instance(
  124. tenant_id=dataset.tenant_id,
  125. provider=dataset.embedding_model_provider,
  126. model_type=ModelType.TEXT_EMBEDDING,
  127. model=dataset.embedding_model
  128. )
  129. except LLMBadRequestError:
  130. raise ValueError(
  131. "No Embedding Model available. Please configure a valid provider "
  132. "in the Settings -> Model Provider.")
  133. except ProviderTokenNotInitError as ex:
  134. raise ValueError(f"The dataset in unavailable, due to: "
  135. f"{ex.description}")
  136. @staticmethod
  137. def update_dataset(dataset_id, data, user):
  138. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  139. dataset = DatasetService.get_dataset(dataset_id)
  140. DatasetService.check_dataset_permission(dataset, user)
  141. action = None
  142. if dataset.indexing_technique != data['indexing_technique']:
  143. # if update indexing_technique
  144. if data['indexing_technique'] == 'economy':
  145. action = 'remove'
  146. filtered_data['embedding_model'] = None
  147. filtered_data['embedding_model_provider'] = None
  148. filtered_data['collection_binding_id'] = None
  149. elif data['indexing_technique'] == 'high_quality':
  150. action = 'add'
  151. # get embedding model setting
  152. try:
  153. model_manager = ModelManager()
  154. embedding_model = model_manager.get_default_model_instance(
  155. tenant_id=current_user.current_tenant_id,
  156. model_type=ModelType.TEXT_EMBEDDING
  157. )
  158. filtered_data['embedding_model'] = embedding_model.model
  159. filtered_data['embedding_model_provider'] = embedding_model.provider
  160. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  161. embedding_model.provider,
  162. embedding_model.model
  163. )
  164. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  165. except LLMBadRequestError:
  166. raise ValueError(
  167. "No Embedding Model available. Please configure a valid provider "
  168. "in the Settings -> Model Provider.")
  169. except ProviderTokenNotInitError as ex:
  170. raise ValueError(ex.description)
  171. filtered_data['updated_by'] = user.id
  172. filtered_data['updated_at'] = datetime.datetime.now()
  173. # update Retrieval model
  174. filtered_data['retrieval_model'] = data['retrieval_model']
  175. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  176. db.session.commit()
  177. if action:
  178. deal_dataset_vector_index_task.delay(dataset_id, action)
  179. return dataset
  180. @staticmethod
  181. def delete_dataset(dataset_id, user):
  182. # todo: cannot delete dataset if it is being processed
  183. dataset = DatasetService.get_dataset(dataset_id)
  184. if dataset is None:
  185. return False
  186. DatasetService.check_dataset_permission(dataset, user)
  187. dataset_was_deleted.send(dataset)
  188. db.session.delete(dataset)
  189. db.session.commit()
  190. return True
  191. @staticmethod
  192. def check_dataset_permission(dataset, user):
  193. if dataset.tenant_id != user.current_tenant_id:
  194. logging.debug(
  195. f'User {user.id} does not have permission to access dataset {dataset.id}')
  196. raise NoPermissionError(
  197. 'You do not have permission to access this dataset.')
  198. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  199. logging.debug(
  200. f'User {user.id} does not have permission to access dataset {dataset.id}')
  201. raise NoPermissionError(
  202. 'You do not have permission to access this dataset.')
  203. @staticmethod
  204. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  205. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  206. .order_by(db.desc(DatasetQuery.created_at)) \
  207. .paginate(
  208. page=page, per_page=per_page, max_per_page=100, error_out=False
  209. )
  210. return dataset_queries.items, dataset_queries.total
  211. @staticmethod
  212. def get_related_apps(dataset_id: str):
  213. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  214. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  215. class DocumentService:
  216. DEFAULT_RULES = {
  217. 'mode': 'custom',
  218. 'rules': {
  219. 'pre_processing_rules': [
  220. {'id': 'remove_extra_spaces', 'enabled': True},
  221. {'id': 'remove_urls_emails', 'enabled': False}
  222. ],
  223. 'segmentation': {
  224. 'delimiter': '\n',
  225. 'max_tokens': 500,
  226. 'chunk_overlap': 50
  227. }
  228. }
  229. }
  230. DOCUMENT_METADATA_SCHEMA = {
  231. "book": {
  232. "title": str,
  233. "language": str,
  234. "author": str,
  235. "publisher": str,
  236. "publication_date": str,
  237. "isbn": str,
  238. "category": str,
  239. },
  240. "web_page": {
  241. "title": str,
  242. "url": str,
  243. "language": str,
  244. "publish_date": str,
  245. "author/publisher": str,
  246. "topic/keywords": str,
  247. "description": str,
  248. },
  249. "paper": {
  250. "title": str,
  251. "language": str,
  252. "author": str,
  253. "publish_date": str,
  254. "journal/conference_name": str,
  255. "volume/issue/page_numbers": str,
  256. "doi": str,
  257. "topic/keywords": str,
  258. "abstract": str,
  259. },
  260. "social_media_post": {
  261. "platform": str,
  262. "author/username": str,
  263. "publish_date": str,
  264. "post_url": str,
  265. "topic/tags": str,
  266. },
  267. "wikipedia_entry": {
  268. "title": str,
  269. "language": str,
  270. "web_page_url": str,
  271. "last_edit_date": str,
  272. "editor/contributor": str,
  273. "summary/introduction": str,
  274. },
  275. "personal_document": {
  276. "title": str,
  277. "author": str,
  278. "creation_date": str,
  279. "last_modified_date": str,
  280. "document_type": str,
  281. "tags/category": str,
  282. },
  283. "business_document": {
  284. "title": str,
  285. "author": str,
  286. "creation_date": str,
  287. "last_modified_date": str,
  288. "document_type": str,
  289. "department/team": str,
  290. },
  291. "im_chat_log": {
  292. "chat_platform": str,
  293. "chat_participants/group_name": str,
  294. "start_date": str,
  295. "end_date": str,
  296. "summary": str,
  297. },
  298. "synced_from_notion": {
  299. "title": str,
  300. "language": str,
  301. "author/creator": str,
  302. "creation_date": str,
  303. "last_modified_date": str,
  304. "notion_page_link": str,
  305. "category/tags": str,
  306. "description": str,
  307. },
  308. "synced_from_github": {
  309. "repository_name": str,
  310. "repository_description": str,
  311. "repository_owner/organization": str,
  312. "code_filename": str,
  313. "code_file_path": str,
  314. "programming_language": str,
  315. "github_link": str,
  316. "open_source_license": str,
  317. "commit_date": str,
  318. "commit_author": str,
  319. },
  320. "others": dict
  321. }
  322. @staticmethod
  323. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  324. document = db.session.query(Document).filter(
  325. Document.id == document_id,
  326. Document.dataset_id == dataset_id
  327. ).first()
  328. return document
  329. @staticmethod
  330. def get_document_by_id(document_id: str) -> Optional[Document]:
  331. document = db.session.query(Document).filter(
  332. Document.id == document_id
  333. ).first()
  334. return document
  335. @staticmethod
  336. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  337. documents = db.session.query(Document).filter(
  338. Document.dataset_id == dataset_id,
  339. Document.enabled == True
  340. ).all()
  341. return documents
  342. @staticmethod
  343. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  344. documents = db.session.query(Document).filter(
  345. Document.batch == batch,
  346. Document.dataset_id == dataset_id,
  347. Document.tenant_id == current_user.current_tenant_id
  348. ).all()
  349. return documents
  350. @staticmethod
  351. def get_document_file_detail(file_id: str):
  352. file_detail = db.session.query(UploadFile). \
  353. filter(UploadFile.id == file_id). \
  354. one_or_none()
  355. return file_detail
  356. @staticmethod
  357. def check_archived(document):
  358. if document.archived:
  359. return True
  360. else:
  361. return False
  362. @staticmethod
  363. def delete_document(document):
  364. # trigger document_was_deleted signal
  365. document_was_deleted.send(document.id, dataset_id=document.dataset_id)
  366. db.session.delete(document)
  367. db.session.commit()
  368. @staticmethod
  369. def pause_document(document):
  370. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  371. raise DocumentIndexingError()
  372. # update document to be paused
  373. document.is_paused = True
  374. document.paused_by = current_user.id
  375. document.paused_at = datetime.datetime.utcnow()
  376. db.session.add(document)
  377. db.session.commit()
  378. # set document paused flag
  379. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  380. redis_client.setnx(indexing_cache_key, "True")
  381. @staticmethod
  382. def recover_document(document):
  383. if not document.is_paused:
  384. raise DocumentIndexingError()
  385. # update document to be recover
  386. document.is_paused = False
  387. document.paused_by = None
  388. document.paused_at = None
  389. db.session.add(document)
  390. db.session.commit()
  391. # delete paused flag
  392. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  393. redis_client.delete(indexing_cache_key)
  394. # trigger async task
  395. recover_document_indexing_task.delay(document.dataset_id, document.id)
  396. @staticmethod
  397. def get_documents_position(dataset_id):
  398. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  399. if document:
  400. return document.position + 1
  401. else:
  402. return 1
  403. @staticmethod
  404. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  405. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  406. created_from: str = 'web'):
  407. # check document limit
  408. if current_app.config['EDITION'] == 'CLOUD':
  409. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  410. count = 0
  411. if document_data["data_source"]["type"] == "upload_file":
  412. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  413. count = len(upload_file_list)
  414. elif document_data["data_source"]["type"] == "notion_import":
  415. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  416. for notion_info in notion_info_list:
  417. count = count + len(notion_info['pages'])
  418. # if dataset is empty, update dataset data_source_type
  419. if not dataset.data_source_type:
  420. dataset.data_source_type = document_data["data_source"]["type"]
  421. if not dataset.indexing_technique:
  422. if 'indexing_technique' not in document_data \
  423. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  424. raise ValueError("Indexing technique is required")
  425. dataset.indexing_technique = document_data["indexing_technique"]
  426. if document_data["indexing_technique"] == 'high_quality':
  427. model_manager = ModelManager()
  428. embedding_model = model_manager.get_default_model_instance(
  429. tenant_id=current_user.current_tenant_id,
  430. model_type=ModelType.TEXT_EMBEDDING
  431. )
  432. dataset.embedding_model = embedding_model.model
  433. dataset.embedding_model_provider = embedding_model.provider
  434. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  435. embedding_model.provider,
  436. embedding_model.model
  437. )
  438. dataset.collection_binding_id = dataset_collection_binding.id
  439. if not dataset.retrieval_model:
  440. default_retrieval_model = {
  441. 'search_method': 'semantic_search',
  442. 'reranking_enable': False,
  443. 'reranking_model': {
  444. 'reranking_provider_name': '',
  445. 'reranking_model_name': ''
  446. },
  447. 'top_k': 2,
  448. 'score_threshold_enabled': False
  449. }
  450. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  451. 'retrieval_model') else default_retrieval_model
  452. documents = []
  453. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  454. if 'original_document_id' in document_data and document_data["original_document_id"]:
  455. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  456. documents.append(document)
  457. else:
  458. # save process rule
  459. if not dataset_process_rule:
  460. process_rule = document_data["process_rule"]
  461. if process_rule["mode"] == "custom":
  462. dataset_process_rule = DatasetProcessRule(
  463. dataset_id=dataset.id,
  464. mode=process_rule["mode"],
  465. rules=json.dumps(process_rule["rules"]),
  466. created_by=account.id
  467. )
  468. elif process_rule["mode"] == "automatic":
  469. dataset_process_rule = DatasetProcessRule(
  470. dataset_id=dataset.id,
  471. mode=process_rule["mode"],
  472. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  473. created_by=account.id
  474. )
  475. db.session.add(dataset_process_rule)
  476. db.session.commit()
  477. position = DocumentService.get_documents_position(dataset.id)
  478. document_ids = []
  479. if document_data["data_source"]["type"] == "upload_file":
  480. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  481. for file_id in upload_file_list:
  482. file = db.session.query(UploadFile).filter(
  483. UploadFile.tenant_id == dataset.tenant_id,
  484. UploadFile.id == file_id
  485. ).first()
  486. # raise error if file not found
  487. if not file:
  488. raise FileNotExistsError()
  489. file_name = file.name
  490. data_source_info = {
  491. "upload_file_id": file_id,
  492. }
  493. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  494. document_data["data_source"]["type"],
  495. document_data["doc_form"],
  496. document_data["doc_language"],
  497. data_source_info, created_from, position,
  498. account, file_name, batch)
  499. db.session.add(document)
  500. db.session.flush()
  501. document_ids.append(document.id)
  502. documents.append(document)
  503. position += 1
  504. elif document_data["data_source"]["type"] == "notion_import":
  505. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  506. exist_page_ids = []
  507. exist_document = dict()
  508. documents = Document.query.filter_by(
  509. dataset_id=dataset.id,
  510. tenant_id=current_user.current_tenant_id,
  511. data_source_type='notion_import',
  512. enabled=True
  513. ).all()
  514. if documents:
  515. for document in documents:
  516. data_source_info = json.loads(document.data_source_info)
  517. exist_page_ids.append(data_source_info['notion_page_id'])
  518. exist_document[data_source_info['notion_page_id']] = document.id
  519. for notion_info in notion_info_list:
  520. workspace_id = notion_info['workspace_id']
  521. data_source_binding = DataSourceBinding.query.filter(
  522. db.and_(
  523. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  524. DataSourceBinding.provider == 'notion',
  525. DataSourceBinding.disabled == False,
  526. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  527. )
  528. ).first()
  529. if not data_source_binding:
  530. raise ValueError('Data source binding not found.')
  531. for page in notion_info['pages']:
  532. if page['page_id'] not in exist_page_ids:
  533. data_source_info = {
  534. "notion_workspace_id": workspace_id,
  535. "notion_page_id": page['page_id'],
  536. "notion_page_icon": page['page_icon'],
  537. "type": page['type']
  538. }
  539. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  540. document_data["data_source"]["type"],
  541. document_data["doc_form"],
  542. document_data["doc_language"],
  543. data_source_info, created_from, position,
  544. account, page['page_name'], batch)
  545. db.session.add(document)
  546. db.session.flush()
  547. document_ids.append(document.id)
  548. documents.append(document)
  549. position += 1
  550. else:
  551. exist_document.pop(page['page_id'])
  552. # delete not selected documents
  553. if len(exist_document) > 0:
  554. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  555. db.session.commit()
  556. # trigger async task
  557. document_indexing_task.delay(dataset.id, document_ids)
  558. return documents, batch
  559. @staticmethod
  560. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  561. document_language: str, data_source_info: dict, created_from: str, position: int,
  562. account: Account,
  563. name: str, batch: str):
  564. document = Document(
  565. tenant_id=dataset.tenant_id,
  566. dataset_id=dataset.id,
  567. position=position,
  568. data_source_type=data_source_type,
  569. data_source_info=json.dumps(data_source_info),
  570. dataset_process_rule_id=process_rule_id,
  571. batch=batch,
  572. name=name,
  573. created_from=created_from,
  574. created_by=account.id,
  575. doc_form=document_form,
  576. doc_language=document_language
  577. )
  578. return document
  579. @staticmethod
  580. def get_tenant_documents_count():
  581. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  582. Document.enabled == True,
  583. Document.archived == False,
  584. Document.tenant_id == current_user.current_tenant_id).count()
  585. return documents_count
  586. @staticmethod
  587. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  588. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  589. created_from: str = 'web'):
  590. DatasetService.check_dataset_model_setting(dataset)
  591. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  592. if document.display_status != 'available':
  593. raise ValueError("Document is not available")
  594. # update document name
  595. if 'name' in document_data and document_data['name']:
  596. document.name = document_data['name']
  597. # save process rule
  598. if 'process_rule' in document_data and document_data['process_rule']:
  599. process_rule = document_data["process_rule"]
  600. if process_rule["mode"] == "custom":
  601. dataset_process_rule = DatasetProcessRule(
  602. dataset_id=dataset.id,
  603. mode=process_rule["mode"],
  604. rules=json.dumps(process_rule["rules"]),
  605. created_by=account.id
  606. )
  607. elif process_rule["mode"] == "automatic":
  608. dataset_process_rule = DatasetProcessRule(
  609. dataset_id=dataset.id,
  610. mode=process_rule["mode"],
  611. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  612. created_by=account.id
  613. )
  614. db.session.add(dataset_process_rule)
  615. db.session.commit()
  616. document.dataset_process_rule_id = dataset_process_rule.id
  617. # update document data source
  618. if 'data_source' in document_data and document_data['data_source']:
  619. file_name = ''
  620. data_source_info = {}
  621. if document_data["data_source"]["type"] == "upload_file":
  622. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  623. for file_id in upload_file_list:
  624. file = db.session.query(UploadFile).filter(
  625. UploadFile.tenant_id == dataset.tenant_id,
  626. UploadFile.id == file_id
  627. ).first()
  628. # raise error if file not found
  629. if not file:
  630. raise FileNotExistsError()
  631. file_name = file.name
  632. data_source_info = {
  633. "upload_file_id": file_id,
  634. }
  635. elif document_data["data_source"]["type"] == "notion_import":
  636. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  637. for notion_info in notion_info_list:
  638. workspace_id = notion_info['workspace_id']
  639. data_source_binding = DataSourceBinding.query.filter(
  640. db.and_(
  641. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  642. DataSourceBinding.provider == 'notion',
  643. DataSourceBinding.disabled == False,
  644. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  645. )
  646. ).first()
  647. if not data_source_binding:
  648. raise ValueError('Data source binding not found.')
  649. for page in notion_info['pages']:
  650. data_source_info = {
  651. "notion_workspace_id": workspace_id,
  652. "notion_page_id": page['page_id'],
  653. "notion_page_icon": page['page_icon'],
  654. "type": page['type']
  655. }
  656. document.data_source_type = document_data["data_source"]["type"]
  657. document.data_source_info = json.dumps(data_source_info)
  658. document.name = file_name
  659. # update document to be waiting
  660. document.indexing_status = 'waiting'
  661. document.completed_at = None
  662. document.processing_started_at = None
  663. document.parsing_completed_at = None
  664. document.cleaning_completed_at = None
  665. document.splitting_completed_at = None
  666. document.updated_at = datetime.datetime.utcnow()
  667. document.created_from = created_from
  668. document.doc_form = document_data['doc_form']
  669. db.session.add(document)
  670. db.session.commit()
  671. # update document segment
  672. update_params = {
  673. DocumentSegment.status: 're_segment'
  674. }
  675. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  676. db.session.commit()
  677. # trigger async task
  678. document_indexing_update_task.delay(document.dataset_id, document.id)
  679. return document
  680. @staticmethod
  681. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  682. count = 0
  683. if document_data["data_source"]["type"] == "upload_file":
  684. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  685. count = len(upload_file_list)
  686. elif document_data["data_source"]["type"] == "notion_import":
  687. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  688. for notion_info in notion_info_list:
  689. count = count + len(notion_info['pages'])
  690. embedding_model = None
  691. dataset_collection_binding_id = None
  692. retrieval_model = None
  693. if document_data['indexing_technique'] == 'high_quality':
  694. model_manager = ModelManager()
  695. embedding_model = model_manager.get_default_model_instance(
  696. tenant_id=current_user.current_tenant_id,
  697. model_type=ModelType.TEXT_EMBEDDING
  698. )
  699. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  700. embedding_model.provider,
  701. embedding_model.model
  702. )
  703. dataset_collection_binding_id = dataset_collection_binding.id
  704. if 'retrieval_model' in document_data and document_data['retrieval_model']:
  705. retrieval_model = document_data['retrieval_model']
  706. else:
  707. default_retrieval_model = {
  708. 'search_method': 'semantic_search',
  709. 'reranking_enable': False,
  710. 'reranking_model': {
  711. 'reranking_provider_name': '',
  712. 'reranking_model_name': ''
  713. },
  714. 'top_k': 2,
  715. 'score_threshold_enabled': False
  716. }
  717. retrieval_model = default_retrieval_model
  718. # save dataset
  719. dataset = Dataset(
  720. tenant_id=tenant_id,
  721. name='',
  722. data_source_type=document_data["data_source"]["type"],
  723. indexing_technique=document_data["indexing_technique"],
  724. created_by=account.id,
  725. embedding_model=embedding_model.model if embedding_model else None,
  726. embedding_model_provider=embedding_model.provider if embedding_model else None,
  727. collection_binding_id=dataset_collection_binding_id,
  728. retrieval_model=retrieval_model
  729. )
  730. db.session.add(dataset)
  731. db.session.flush()
  732. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  733. cut_length = 18
  734. cut_name = documents[0].name[:cut_length]
  735. dataset.name = cut_name + '...'
  736. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  737. db.session.commit()
  738. return dataset, documents, batch
  739. @classmethod
  740. def document_create_args_validate(cls, args: dict):
  741. if 'original_document_id' not in args or not args['original_document_id']:
  742. DocumentService.data_source_args_validate(args)
  743. DocumentService.process_rule_args_validate(args)
  744. else:
  745. if ('data_source' not in args and not args['data_source']) \
  746. and ('process_rule' not in args and not args['process_rule']):
  747. raise ValueError("Data source or Process rule is required")
  748. else:
  749. if 'data_source' in args and args['data_source']:
  750. DocumentService.data_source_args_validate(args)
  751. if 'process_rule' in args and args['process_rule']:
  752. DocumentService.process_rule_args_validate(args)
  753. @classmethod
  754. def data_source_args_validate(cls, args: dict):
  755. if 'data_source' not in args or not args['data_source']:
  756. raise ValueError("Data source is required")
  757. if not isinstance(args['data_source'], dict):
  758. raise ValueError("Data source is invalid")
  759. if 'type' not in args['data_source'] or not args['data_source']['type']:
  760. raise ValueError("Data source type is required")
  761. if args['data_source']['type'] not in Document.DATA_SOURCES:
  762. raise ValueError("Data source type is invalid")
  763. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  764. raise ValueError("Data source info is required")
  765. if args['data_source']['type'] == 'upload_file':
  766. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  767. 'file_info_list']:
  768. raise ValueError("File source info is required")
  769. if args['data_source']['type'] == 'notion_import':
  770. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  771. 'notion_info_list']:
  772. raise ValueError("Notion source info is required")
  773. @classmethod
  774. def process_rule_args_validate(cls, args: dict):
  775. if 'process_rule' not in args or not args['process_rule']:
  776. raise ValueError("Process rule is required")
  777. if not isinstance(args['process_rule'], dict):
  778. raise ValueError("Process rule is invalid")
  779. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  780. raise ValueError("Process rule mode is required")
  781. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  782. raise ValueError("Process rule mode is invalid")
  783. if args['process_rule']['mode'] == 'automatic':
  784. args['process_rule']['rules'] = {}
  785. else:
  786. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  787. raise ValueError("Process rule rules is required")
  788. if not isinstance(args['process_rule']['rules'], dict):
  789. raise ValueError("Process rule rules is invalid")
  790. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  791. or args['process_rule']['rules']['pre_processing_rules'] is None:
  792. raise ValueError("Process rule pre_processing_rules is required")
  793. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  794. raise ValueError("Process rule pre_processing_rules is invalid")
  795. unique_pre_processing_rule_dicts = {}
  796. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  797. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  798. raise ValueError("Process rule pre_processing_rules id is required")
  799. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  800. raise ValueError("Process rule pre_processing_rules id is invalid")
  801. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  802. raise ValueError("Process rule pre_processing_rules enabled is required")
  803. if not isinstance(pre_processing_rule['enabled'], bool):
  804. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  805. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  806. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  807. if 'segmentation' not in args['process_rule']['rules'] \
  808. or args['process_rule']['rules']['segmentation'] is None:
  809. raise ValueError("Process rule segmentation is required")
  810. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  811. raise ValueError("Process rule segmentation is invalid")
  812. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  813. or not args['process_rule']['rules']['segmentation']['separator']:
  814. raise ValueError("Process rule segmentation separator is required")
  815. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  816. raise ValueError("Process rule segmentation separator is invalid")
  817. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  818. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  819. raise ValueError("Process rule segmentation max_tokens is required")
  820. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  821. raise ValueError("Process rule segmentation max_tokens is invalid")
  822. @classmethod
  823. def estimate_args_validate(cls, args: dict):
  824. if 'info_list' not in args or not args['info_list']:
  825. raise ValueError("Data source info is required")
  826. if not isinstance(args['info_list'], dict):
  827. raise ValueError("Data info is invalid")
  828. if 'process_rule' not in args or not args['process_rule']:
  829. raise ValueError("Process rule is required")
  830. if not isinstance(args['process_rule'], dict):
  831. raise ValueError("Process rule is invalid")
  832. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  833. raise ValueError("Process rule mode is required")
  834. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  835. raise ValueError("Process rule mode is invalid")
  836. if args['process_rule']['mode'] == 'automatic':
  837. args['process_rule']['rules'] = {}
  838. else:
  839. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  840. raise ValueError("Process rule rules is required")
  841. if not isinstance(args['process_rule']['rules'], dict):
  842. raise ValueError("Process rule rules is invalid")
  843. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  844. or args['process_rule']['rules']['pre_processing_rules'] is None:
  845. raise ValueError("Process rule pre_processing_rules is required")
  846. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  847. raise ValueError("Process rule pre_processing_rules is invalid")
  848. unique_pre_processing_rule_dicts = {}
  849. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  850. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  851. raise ValueError("Process rule pre_processing_rules id is required")
  852. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  853. raise ValueError("Process rule pre_processing_rules id is invalid")
  854. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  855. raise ValueError("Process rule pre_processing_rules enabled is required")
  856. if not isinstance(pre_processing_rule['enabled'], bool):
  857. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  858. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  859. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  860. if 'segmentation' not in args['process_rule']['rules'] \
  861. or args['process_rule']['rules']['segmentation'] is None:
  862. raise ValueError("Process rule segmentation is required")
  863. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  864. raise ValueError("Process rule segmentation is invalid")
  865. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  866. or not args['process_rule']['rules']['segmentation']['separator']:
  867. raise ValueError("Process rule segmentation separator is required")
  868. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  869. raise ValueError("Process rule segmentation separator is invalid")
  870. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  871. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  872. raise ValueError("Process rule segmentation max_tokens is required")
  873. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  874. raise ValueError("Process rule segmentation max_tokens is invalid")
  875. class SegmentService:
  876. @classmethod
  877. def segment_create_args_validate(cls, args: dict, document: Document):
  878. if document.doc_form == 'qa_model':
  879. if 'answer' not in args or not args['answer']:
  880. raise ValueError("Answer is required")
  881. if not args['answer'].strip():
  882. raise ValueError("Answer is empty")
  883. if 'content' not in args or not args['content'] or not args['content'].strip():
  884. raise ValueError("Content is empty")
  885. @classmethod
  886. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  887. content = args['content']
  888. doc_id = str(uuid.uuid4())
  889. segment_hash = helper.generate_text_hash(content)
  890. tokens = 0
  891. if dataset.indexing_technique == 'high_quality':
  892. model_manager = ModelManager()
  893. embedding_model = model_manager.get_model_instance(
  894. tenant_id=current_user.current_tenant_id,
  895. provider=dataset.embedding_model_provider,
  896. model_type=ModelType.TEXT_EMBEDDING,
  897. model=dataset.embedding_model
  898. )
  899. # calc embedding use tokens
  900. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  901. tokens = model_type_instance.get_num_tokens(
  902. model=embedding_model.model,
  903. credentials=embedding_model.credentials,
  904. texts=[content]
  905. )
  906. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  907. DocumentSegment.document_id == document.id
  908. ).scalar()
  909. segment_document = DocumentSegment(
  910. tenant_id=current_user.current_tenant_id,
  911. dataset_id=document.dataset_id,
  912. document_id=document.id,
  913. index_node_id=doc_id,
  914. index_node_hash=segment_hash,
  915. position=max_position + 1 if max_position else 1,
  916. content=content,
  917. word_count=len(content),
  918. tokens=tokens,
  919. status='completed',
  920. indexing_at=datetime.datetime.utcnow(),
  921. completed_at=datetime.datetime.utcnow(),
  922. created_by=current_user.id
  923. )
  924. if document.doc_form == 'qa_model':
  925. segment_document.answer = args['answer']
  926. db.session.add(segment_document)
  927. db.session.commit()
  928. # save vector index
  929. try:
  930. VectorService.create_segment_vector(args['keywords'], segment_document, dataset)
  931. except Exception as e:
  932. logging.exception("create segment index failed")
  933. segment_document.enabled = False
  934. segment_document.disabled_at = datetime.datetime.utcnow()
  935. segment_document.status = 'error'
  936. segment_document.error = str(e)
  937. db.session.commit()
  938. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  939. return segment
  940. @classmethod
  941. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  942. embedding_model = None
  943. if dataset.indexing_technique == 'high_quality':
  944. model_manager = ModelManager()
  945. embedding_model = model_manager.get_model_instance(
  946. tenant_id=current_user.current_tenant_id,
  947. provider=dataset.embedding_model_provider,
  948. model_type=ModelType.TEXT_EMBEDDING,
  949. model=dataset.embedding_model
  950. )
  951. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  952. DocumentSegment.document_id == document.id
  953. ).scalar()
  954. pre_segment_data_list = []
  955. segment_data_list = []
  956. for segment_item in segments:
  957. content = segment_item['content']
  958. doc_id = str(uuid.uuid4())
  959. segment_hash = helper.generate_text_hash(content)
  960. tokens = 0
  961. if dataset.indexing_technique == 'high_quality' and embedding_model:
  962. # calc embedding use tokens
  963. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  964. tokens = model_type_instance.get_num_tokens(
  965. model=embedding_model.model,
  966. credentials=embedding_model.credentials,
  967. texts=[content]
  968. )
  969. segment_document = DocumentSegment(
  970. tenant_id=current_user.current_tenant_id,
  971. dataset_id=document.dataset_id,
  972. document_id=document.id,
  973. index_node_id=doc_id,
  974. index_node_hash=segment_hash,
  975. position=max_position + 1 if max_position else 1,
  976. content=content,
  977. word_count=len(content),
  978. tokens=tokens,
  979. status='completed',
  980. indexing_at=datetime.datetime.utcnow(),
  981. completed_at=datetime.datetime.utcnow(),
  982. created_by=current_user.id
  983. )
  984. if document.doc_form == 'qa_model':
  985. segment_document.answer = segment_item['answer']
  986. db.session.add(segment_document)
  987. segment_data_list.append(segment_document)
  988. pre_segment_data = {
  989. 'segment': segment_document,
  990. 'keywords': segment_item['keywords']
  991. }
  992. pre_segment_data_list.append(pre_segment_data)
  993. try:
  994. # save vector index
  995. VectorService.multi_create_segment_vector(pre_segment_data_list, dataset)
  996. except Exception as e:
  997. logging.exception("create segment index failed")
  998. for segment_document in segment_data_list:
  999. segment_document.enabled = False
  1000. segment_document.disabled_at = datetime.datetime.utcnow()
  1001. segment_document.status = 'error'
  1002. segment_document.error = str(e)
  1003. db.session.commit()
  1004. return segment_data_list
  1005. @classmethod
  1006. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1007. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1008. cache_result = redis_client.get(indexing_cache_key)
  1009. if cache_result is not None:
  1010. raise ValueError("Segment is indexing, please try again later")
  1011. try:
  1012. content = args['content']
  1013. if segment.content == content:
  1014. if document.doc_form == 'qa_model':
  1015. segment.answer = args['answer']
  1016. if 'keywords' in args and args['keywords']:
  1017. segment.keywords = args['keywords']
  1018. if'enabled' in args and args['enabled'] is not None:
  1019. segment.enabled = args['enabled']
  1020. db.session.add(segment)
  1021. db.session.commit()
  1022. # update segment index task
  1023. if args['keywords']:
  1024. kw_index = IndexBuilder.get_index(dataset, 'economy')
  1025. # delete from keyword index
  1026. kw_index.delete_by_ids([segment.index_node_id])
  1027. # save keyword index
  1028. kw_index.update_segment_keywords_index(segment.index_node_id, segment.keywords)
  1029. else:
  1030. segment_hash = helper.generate_text_hash(content)
  1031. tokens = 0
  1032. if dataset.indexing_technique == 'high_quality':
  1033. model_manager = ModelManager()
  1034. embedding_model = model_manager.get_model_instance(
  1035. tenant_id=current_user.current_tenant_id,
  1036. provider=dataset.embedding_model_provider,
  1037. model_type=ModelType.TEXT_EMBEDDING,
  1038. model=dataset.embedding_model
  1039. )
  1040. # calc embedding use tokens
  1041. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1042. tokens = model_type_instance.get_num_tokens(
  1043. model=embedding_model.model,
  1044. credentials=embedding_model.credentials,
  1045. texts=[content]
  1046. )
  1047. segment.content = content
  1048. segment.index_node_hash = segment_hash
  1049. segment.word_count = len(content)
  1050. segment.tokens = tokens
  1051. segment.status = 'completed'
  1052. segment.indexing_at = datetime.datetime.utcnow()
  1053. segment.completed_at = datetime.datetime.utcnow()
  1054. segment.updated_by = current_user.id
  1055. segment.updated_at = datetime.datetime.utcnow()
  1056. if document.doc_form == 'qa_model':
  1057. segment.answer = args['answer']
  1058. db.session.add(segment)
  1059. db.session.commit()
  1060. # update segment vector index
  1061. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1062. except Exception as e:
  1063. logging.exception("update segment index failed")
  1064. segment.enabled = False
  1065. segment.disabled_at = datetime.datetime.utcnow()
  1066. segment.status = 'error'
  1067. segment.error = str(e)
  1068. db.session.commit()
  1069. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1070. return segment
  1071. @classmethod
  1072. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1073. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1074. cache_result = redis_client.get(indexing_cache_key)
  1075. if cache_result is not None:
  1076. raise ValueError("Segment is deleting.")
  1077. # enabled segment need to delete index
  1078. if segment.enabled:
  1079. # send delete segment index task
  1080. redis_client.setex(indexing_cache_key, 600, 1)
  1081. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1082. db.session.delete(segment)
  1083. db.session.commit()
  1084. class DatasetCollectionBindingService:
  1085. @classmethod
  1086. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1087. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1088. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1089. filter(DatasetCollectionBinding.provider_name == provider_name,
  1090. DatasetCollectionBinding.model_name == model_name,
  1091. DatasetCollectionBinding.type == collection_type). \
  1092. order_by(DatasetCollectionBinding.created_at). \
  1093. first()
  1094. if not dataset_collection_binding:
  1095. dataset_collection_binding = DatasetCollectionBinding(
  1096. provider_name=provider_name,
  1097. model_name=model_name,
  1098. collection_name="Vector_index_" + str(uuid.uuid4()).replace("-", "_") + '_Node',
  1099. type=collection_type
  1100. )
  1101. db.session.add(dataset_collection_binding)
  1102. db.session.commit()
  1103. return dataset_collection_binding
  1104. @classmethod
  1105. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1106. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1107. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1108. filter(DatasetCollectionBinding.id == collection_binding_id,
  1109. DatasetCollectionBinding.type == collection_type). \
  1110. order_by(DatasetCollectionBinding.created_at). \
  1111. first()
  1112. return dataset_collection_binding