| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788 | 
from typing import Optionalfrom flask import current_app, Flaskfrom langchain.embeddings.base import Embeddingsfrom core.index.vector_index.vector_index import VectorIndexfrom core.model_providers.model_factory import ModelFactoryfrom models.dataset import Datasetdefault_retrieval_model = {    'search_method': 'semantic_search',    'reranking_enable': False,    'reranking_model': {        'reranking_provider_name': '',        'reranking_model_name': ''    },    'top_k': 2,    'score_threshold_enable': False}class RetrievalService:    @classmethod    def embedding_search(cls, flask_app: Flask, dataset: Dataset, query: str,                         top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                         all_documents: list, search_method: str, embeddings: Embeddings):        with flask_app.app_context():            vector_index = VectorIndex(                dataset=dataset,                config=current_app.config,                embeddings=embeddings            )            documents = vector_index.search(                query,                search_type='similarity_score_threshold',                search_kwargs={                    'k': top_k,                    'score_threshold': score_threshold,                    'filter': {                        'group_id': [dataset.id]                    }                }            )            if documents:                if reranking_model and search_method == 'semantic_search':                    rerank = ModelFactory.get_reranking_model(                        tenant_id=dataset.tenant_id,                        model_provider_name=reranking_model['reranking_provider_name'],                        model_name=reranking_model['reranking_model_name']                    )                    all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))                else:                    all_documents.extend(documents)    @classmethod    def full_text_index_search(cls, flask_app: Flask, dataset: Dataset, query: str,                               top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],                               all_documents: list, search_method: str, embeddings: Embeddings):        with flask_app.app_context():            vector_index = VectorIndex(                dataset=dataset,                config=current_app.config,                embeddings=embeddings            )            documents = vector_index.search_by_full_text_index(                query,                search_type='similarity_score_threshold',                top_k=top_k            )            if documents:                if reranking_model and search_method == 'full_text_search':                    rerank = ModelFactory.get_reranking_model(                        tenant_id=dataset.tenant_id,                        model_provider_name=reranking_model['reranking_provider_name'],                        model_name=reranking_model['reranking_model_name']                    )                    all_documents.extend(rerank.rerank(query, documents, score_threshold, len(documents)))                else:                    all_documents.extend(documents)
 |