| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783 | 
							- import datetime
 
- import json
 
- import logging
 
- import re
 
- import threading
 
- import time
 
- import uuid
 
- from typing import Optional, List, cast
 
- from flask import current_app, Flask
 
- from flask_login import current_user
 
- from langchain.schema import Document
 
- from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
 
- from core.data_loader.file_extractor import FileExtractor
 
- from core.data_loader.loader.notion import NotionLoader
 
- from core.docstore.dataset_docstore import DatesetDocumentStore
 
- from core.generator.llm_generator import LLMGenerator
 
- from core.index.index import IndexBuilder
 
- from core.model_providers.error import ProviderTokenNotInitError
 
- from core.model_providers.model_factory import ModelFactory
 
- from core.model_providers.models.entity.message import MessageType
 
- from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
 
- from extensions.ext_database import db
 
- from extensions.ext_redis import redis_client
 
- from extensions.ext_storage import storage
 
- from libs import helper
 
- from models.dataset import Document as DatasetDocument
 
- from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
 
- from models.model import UploadFile
 
- from models.source import DataSourceBinding
 
- class IndexingRunner:
 
-     def __init__(self):
 
-         self.storage = storage
 
-     def run(self, dataset_documents: List[DatasetDocument]):
 
-         """Run the indexing process."""
 
-         for dataset_document in dataset_documents:
 
-             try:
 
-                 # get dataset
 
-                 dataset = Dataset.query.filter_by(
 
-                     id=dataset_document.dataset_id
 
-                 ).first()
 
-                 if not dataset:
 
-                     raise ValueError("no dataset found")
 
-                 # load file
 
-                 text_docs = self._load_data(dataset_document)
 
-                 # get the process rule
 
-                 processing_rule = db.session.query(DatasetProcessRule). \
 
-                     filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 
-                     first()
 
-                 # get splitter
 
-                 splitter = self._get_splitter(processing_rule)
 
-                 # split to documents
 
-                 documents = self._step_split(
 
-                     text_docs=text_docs,
 
-                     splitter=splitter,
 
-                     dataset=dataset,
 
-                     dataset_document=dataset_document,
 
-                     processing_rule=processing_rule
 
-                 )
 
-                 self._build_index(
 
-                     dataset=dataset,
 
-                     dataset_document=dataset_document,
 
-                     documents=documents
 
-                 )
 
-             except DocumentIsPausedException:
 
-                 raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 
-             except ProviderTokenNotInitError as e:
 
-                 dataset_document.indexing_status = 'error'
 
-                 dataset_document.error = str(e.description)
 
-                 dataset_document.stopped_at = datetime.datetime.utcnow()
 
-                 db.session.commit()
 
-             except Exception as e:
 
-                 logging.exception("consume document failed")
 
-                 dataset_document.indexing_status = 'error'
 
-                 dataset_document.error = str(e)
 
-                 dataset_document.stopped_at = datetime.datetime.utcnow()
 
-                 db.session.commit()
 
-     def format_split_text(self, text):
 
-         regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
 
-         matches = re.findall(regex, text, re.MULTILINE)
 
-         result = []
 
-         for match in matches:
 
-             q = match[0]
 
-             a = match[1]
 
-             if q and a:
 
-                 result.append({
 
-                     "question": q,
 
-                     "answer": re.sub(r"\n\s*", "\n", a.strip())
 
-                 })
 
-         return result
 
-     def run_in_splitting_status(self, dataset_document: DatasetDocument):
 
-         """Run the indexing process when the index_status is splitting."""
 
-         try:
 
-             # get dataset
 
-             dataset = Dataset.query.filter_by(
 
-                 id=dataset_document.dataset_id
 
-             ).first()
 
-             if not dataset:
 
-                 raise ValueError("no dataset found")
 
-             # get exist document_segment list and delete
 
-             document_segments = DocumentSegment.query.filter_by(
 
-                 dataset_id=dataset.id,
 
-                 document_id=dataset_document.id
 
-             ).all()
 
-             db.session.delete(document_segments)
 
-             db.session.commit()
 
-             # load file
 
-             text_docs = self._load_data(dataset_document)
 
-             # get the process rule
 
-             processing_rule = db.session.query(DatasetProcessRule). \
 
-                 filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
 
-                 first()
 
-             # get splitter
 
-             splitter = self._get_splitter(processing_rule)
 
-             # split to documents
 
-             documents = self._step_split(
 
-                 text_docs=text_docs,
 
-                 splitter=splitter,
 
-                 dataset=dataset,
 
-                 dataset_document=dataset_document,
 
-                 processing_rule=processing_rule
 
-             )
 
-             # build index
 
-             self._build_index(
 
-                 dataset=dataset,
 
-                 dataset_document=dataset_document,
 
-                 documents=documents
 
-             )
 
-         except DocumentIsPausedException:
 
-             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 
-         except ProviderTokenNotInitError as e:
 
-             dataset_document.indexing_status = 'error'
 
-             dataset_document.error = str(e.description)
 
-             dataset_document.stopped_at = datetime.datetime.utcnow()
 
-             db.session.commit()
 
-         except Exception as e:
 
-             logging.exception("consume document failed")
 
-             dataset_document.indexing_status = 'error'
 
-             dataset_document.error = str(e)
 
-             dataset_document.stopped_at = datetime.datetime.utcnow()
 
-             db.session.commit()
 
-     def run_in_indexing_status(self, dataset_document: DatasetDocument):
 
-         """Run the indexing process when the index_status is indexing."""
 
-         try:
 
-             # get dataset
 
-             dataset = Dataset.query.filter_by(
 
-                 id=dataset_document.dataset_id
 
-             ).first()
 
-             if not dataset:
 
-                 raise ValueError("no dataset found")
 
-             # get exist document_segment list and delete
 
-             document_segments = DocumentSegment.query.filter_by(
 
-                 dataset_id=dataset.id,
 
-                 document_id=dataset_document.id
 
-             ).all()
 
-             documents = []
 
-             if document_segments:
 
-                 for document_segment in document_segments:
 
-                     # transform segment to node
 
-                     if document_segment.status != "completed":
 
-                         document = Document(
 
-                             page_content=document_segment.content,
 
-                             metadata={
 
-                                 "doc_id": document_segment.index_node_id,
 
-                                 "doc_hash": document_segment.index_node_hash,
 
-                                 "document_id": document_segment.document_id,
 
-                                 "dataset_id": document_segment.dataset_id,
 
-                             }
 
-                         )
 
-                         documents.append(document)
 
-             # build index
 
-             self._build_index(
 
-                 dataset=dataset,
 
-                 dataset_document=dataset_document,
 
-                 documents=documents
 
-             )
 
-         except DocumentIsPausedException:
 
-             raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
 
-         except ProviderTokenNotInitError as e:
 
-             dataset_document.indexing_status = 'error'
 
-             dataset_document.error = str(e.description)
 
-             dataset_document.stopped_at = datetime.datetime.utcnow()
 
-             db.session.commit()
 
-         except Exception as e:
 
-             logging.exception("consume document failed")
 
-             dataset_document.indexing_status = 'error'
 
-             dataset_document.error = str(e)
 
-             dataset_document.stopped_at = datetime.datetime.utcnow()
 
-             db.session.commit()
 
-     def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
 
-                                doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
 
-                                indexing_technique: str = 'economy') -> dict:
 
-         """
 
-         Estimate the indexing for the document.
 
-         """
 
-         embedding_model = None
 
-         if dataset_id:
 
-             dataset = Dataset.query.filter_by(
 
-                 id=dataset_id
 
-             ).first()
 
-             if not dataset:
 
-                 raise ValueError('Dataset not found.')
 
-             if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
 
-                 embedding_model = ModelFactory.get_embedding_model(
 
-                     tenant_id=dataset.tenant_id,
 
-                     model_provider_name=dataset.embedding_model_provider,
 
-                     model_name=dataset.embedding_model
 
-                 )
 
-         else:
 
-             if indexing_technique == 'high_quality':
 
-                 embedding_model = ModelFactory.get_embedding_model(
 
-                     tenant_id=tenant_id
 
-                 )
 
-         tokens = 0
 
-         preview_texts = []
 
-         total_segments = 0
 
-         for file_detail in file_details:
 
-             # load data from file
 
-             text_docs = FileExtractor.load(file_detail)
 
-             processing_rule = DatasetProcessRule(
 
-                 mode=tmp_processing_rule["mode"],
 
-                 rules=json.dumps(tmp_processing_rule["rules"])
 
-             )
 
-             # get splitter
 
-             splitter = self._get_splitter(processing_rule)
 
-             # split to documents
 
-             documents = self._split_to_documents_for_estimate(
 
-                 text_docs=text_docs,
 
-                 splitter=splitter,
 
-                 processing_rule=processing_rule
 
-             )
 
-             total_segments += len(documents)
 
-             for document in documents:
 
-                 if len(preview_texts) < 5:
 
-                     preview_texts.append(document.page_content)
 
-                 if indexing_technique == 'high_quality' or embedding_model:
 
-                     tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
 
-         if doc_form and doc_form == 'qa_model':
 
-             text_generation_model = ModelFactory.get_text_generation_model(
 
-                 tenant_id=tenant_id
 
-             )
 
-             if len(preview_texts) > 0:
 
-                 # qa model document
 
-                 response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
 
-                 document_qa_list = self.format_split_text(response)
 
-                 return {
 
-                     "total_segments": total_segments * 20,
 
-                     "tokens": total_segments * 2000,
 
-                     "total_price": '{:f}'.format(
 
-                         text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
 
-                     "currency": embedding_model.get_currency(),
 
-                     "qa_preview": document_qa_list,
 
-                     "preview": preview_texts
 
-                 }
 
-         return {
 
-             "total_segments": total_segments,
 
-             "tokens": tokens,
 
-             "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
 
-             "currency": embedding_model.get_currency() if embedding_model else 'USD',
 
-             "preview": preview_texts
 
-         }
 
-     def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict,
 
-                                  doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
 
-                                  indexing_technique: str = 'economy') -> dict:
 
-         """
 
-         Estimate the indexing for the document.
 
-         """
 
-         embedding_model = None
 
-         if dataset_id:
 
-             dataset = Dataset.query.filter_by(
 
-                 id=dataset_id
 
-             ).first()
 
-             if not dataset:
 
-                 raise ValueError('Dataset not found.')
 
-             if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
 
-                 embedding_model = ModelFactory.get_embedding_model(
 
-                     tenant_id=dataset.tenant_id,
 
-                     model_provider_name=dataset.embedding_model_provider,
 
-                     model_name=dataset.embedding_model
 
-                 )
 
-         else:
 
-             if indexing_technique == 'high_quality':
 
-                 embedding_model = ModelFactory.get_embedding_model(
 
-                     tenant_id=tenant_id
 
-                 )
 
-         # load data from notion
 
-         tokens = 0
 
-         preview_texts = []
 
-         total_segments = 0
 
-         for notion_info in notion_info_list:
 
-             workspace_id = notion_info['workspace_id']
 
-             data_source_binding = DataSourceBinding.query.filter(
 
-                 db.and_(
 
-                     DataSourceBinding.tenant_id == current_user.current_tenant_id,
 
-                     DataSourceBinding.provider == 'notion',
 
-                     DataSourceBinding.disabled == False,
 
-                     DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
 
-                 )
 
-             ).first()
 
-             if not data_source_binding:
 
-                 raise ValueError('Data source binding not found.')
 
-             for page in notion_info['pages']:
 
-                 loader = NotionLoader(
 
-                     notion_access_token=data_source_binding.access_token,
 
-                     notion_workspace_id=workspace_id,
 
-                     notion_obj_id=page['page_id'],
 
-                     notion_page_type=page['type']
 
-                 )
 
-                 documents = loader.load()
 
-                 processing_rule = DatasetProcessRule(
 
-                     mode=tmp_processing_rule["mode"],
 
-                     rules=json.dumps(tmp_processing_rule["rules"])
 
-                 )
 
-                 # get splitter
 
-                 splitter = self._get_splitter(processing_rule)
 
-                 # split to documents
 
-                 documents = self._split_to_documents_for_estimate(
 
-                     text_docs=documents,
 
-                     splitter=splitter,
 
-                     processing_rule=processing_rule
 
-                 )
 
-                 total_segments += len(documents)
 
-                 for document in documents:
 
-                     if len(preview_texts) < 5:
 
-                         preview_texts.append(document.page_content)
 
-                     if indexing_technique == 'high_quality' or embedding_model:
 
-                         tokens += embedding_model.get_num_tokens(document.page_content)
 
-         if doc_form and doc_form == 'qa_model':
 
-             text_generation_model = ModelFactory.get_text_generation_model(
 
-                 tenant_id=tenant_id
 
-             )
 
-             if len(preview_texts) > 0:
 
-                 # qa model document
 
-                 response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0], doc_language)
 
-                 document_qa_list = self.format_split_text(response)
 
-                 return {
 
-                     "total_segments": total_segments * 20,
 
-                     "tokens": total_segments * 2000,
 
-                     "total_price": '{:f}'.format(
 
-                         text_generation_model.calc_tokens_price(total_segments * 2000, MessageType.HUMAN)),
 
-                     "currency": embedding_model.get_currency(),
 
-                     "qa_preview": document_qa_list,
 
-                     "preview": preview_texts
 
-                 }
 
-         return {
 
-             "total_segments": total_segments,
 
-             "tokens": tokens,
 
-             "total_price": '{:f}'.format(embedding_model.calc_tokens_price(tokens)) if embedding_model else 0,
 
-             "currency": embedding_model.get_currency() if embedding_model else 'USD',
 
-             "preview": preview_texts
 
-         }
 
-     def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
 
-         # load file
 
-         if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
 
-             return []
 
-         data_source_info = dataset_document.data_source_info_dict
 
-         text_docs = []
 
-         if dataset_document.data_source_type == 'upload_file':
 
-             if not data_source_info or 'upload_file_id' not in data_source_info:
 
-                 raise ValueError("no upload file found")
 
-             file_detail = db.session.query(UploadFile). \
 
-                 filter(UploadFile.id == data_source_info['upload_file_id']). \
 
-                 one_or_none()
 
-             if file_detail:
 
-                 text_docs = FileExtractor.load(file_detail)
 
-         elif dataset_document.data_source_type == 'notion_import':
 
-             loader = NotionLoader.from_document(dataset_document)
 
-             text_docs = loader.load()
 
-         # update document status to splitting
 
-         self._update_document_index_status(
 
-             document_id=dataset_document.id,
 
-             after_indexing_status="splitting",
 
-             extra_update_params={
 
-                 DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
 
-                 DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
 
-             }
 
-         )
 
-         # replace doc id to document model id
 
-         text_docs = cast(List[Document], text_docs)
 
-         for text_doc in text_docs:
 
-             # remove invalid symbol
 
-             text_doc.page_content = self.filter_string(text_doc.page_content)
 
-             text_doc.metadata['document_id'] = dataset_document.id
 
-             text_doc.metadata['dataset_id'] = dataset_document.dataset_id
 
-         return text_docs
 
-     def filter_string(self, text):
 
-         text = re.sub(r'<\|', '<', text)
 
-         text = re.sub(r'\|>', '>', text)
 
-         text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
 
-         return text
 
-     def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
 
-         """
 
-         Get the NodeParser object according to the processing rule.
 
-         """
 
-         if processing_rule.mode == "custom":
 
-             # The user-defined segmentation rule
 
-             rules = json.loads(processing_rule.rules)
 
-             segmentation = rules["segmentation"]
 
-             if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
 
-                 raise ValueError("Custom segment length should be between 50 and 1000.")
 
-             separator = segmentation["separator"]
 
-             if separator:
 
-                 separator = separator.replace('\\n', '\n')
 
-             character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
 
-                 chunk_size=segmentation["max_tokens"],
 
-                 chunk_overlap=0,
 
-                 fixed_separator=separator,
 
-                 separators=["\n\n", "。", ".", " ", ""]
 
-             )
 
-         else:
 
-             # Automatic segmentation
 
-             character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
 
-                 chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
 
-                 chunk_overlap=0,
 
-                 separators=["\n\n", "。", ".", " ", ""]
 
-             )
 
-         return character_splitter
 
-     def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
 
-                     dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
 
-             -> List[Document]:
 
-         """
 
-         Split the text documents into documents and save them to the document segment.
 
-         """
 
-         documents = self._split_to_documents(
 
-             text_docs=text_docs,
 
-             splitter=splitter,
 
-             processing_rule=processing_rule,
 
-             tenant_id=dataset.tenant_id,
 
-             document_form=dataset_document.doc_form,
 
-             document_language=dataset_document.doc_language
 
-         )
 
-         # save node to document segment
 
-         doc_store = DatesetDocumentStore(
 
-             dataset=dataset,
 
-             user_id=dataset_document.created_by,
 
-             document_id=dataset_document.id
 
-         )
 
-         # add document segments
 
-         doc_store.add_documents(documents)
 
-         # update document status to indexing
 
-         cur_time = datetime.datetime.utcnow()
 
-         self._update_document_index_status(
 
-             document_id=dataset_document.id,
 
-             after_indexing_status="indexing",
 
-             extra_update_params={
 
-                 DatasetDocument.cleaning_completed_at: cur_time,
 
-                 DatasetDocument.splitting_completed_at: cur_time,
 
-             }
 
-         )
 
-         # update segment status to indexing
 
-         self._update_segments_by_document(
 
-             dataset_document_id=dataset_document.id,
 
-             update_params={
 
-                 DocumentSegment.status: "indexing",
 
-                 DocumentSegment.indexing_at: datetime.datetime.utcnow()
 
-             }
 
-         )
 
-         return documents
 
-     def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
 
-                             processing_rule: DatasetProcessRule, tenant_id: str,
 
-                             document_form: str, document_language: str) -> List[Document]:
 
-         """
 
-         Split the text documents into nodes.
 
-         """
 
-         all_documents = []
 
-         all_qa_documents = []
 
-         for text_doc in text_docs:
 
-             # document clean
 
-             document_text = self._document_clean(text_doc.page_content, processing_rule)
 
-             text_doc.page_content = document_text
 
-             # parse document to nodes
 
-             documents = splitter.split_documents([text_doc])
 
-             split_documents = []
 
-             for document_node in documents:
 
-                 if document_node.page_content.strip():
 
-                     doc_id = str(uuid.uuid4())
 
-                     hash = helper.generate_text_hash(document_node.page_content)
 
-                     document_node.metadata['doc_id'] = doc_id
 
-                     document_node.metadata['doc_hash'] = hash
 
-                     split_documents.append(document_node)
 
-             all_documents.extend(split_documents)
 
-         # processing qa document
 
-         if document_form == 'qa_model':
 
-             for i in range(0, len(all_documents), 10):
 
-                 threads = []
 
-                 sub_documents = all_documents[i:i + 10]
 
-                 for doc in sub_documents:
 
-                     document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
 
-                         'flask_app': current_app._get_current_object(),
 
-                         'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
 
-                         'document_language': document_language})
 
-                     threads.append(document_format_thread)
 
-                     document_format_thread.start()
 
-                 for thread in threads:
 
-                     thread.join()
 
-             return all_qa_documents
 
-         return all_documents
 
-     def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
 
-         format_documents = []
 
-         if document_node.page_content is None or not document_node.page_content.strip():
 
-             return
 
-         with flask_app.app_context():
 
-             try:
 
-                 # qa model document
 
-                 response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
 
-                 document_qa_list = self.format_split_text(response)
 
-                 qa_documents = []
 
-                 for result in document_qa_list:
 
-                     qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
 
-                     doc_id = str(uuid.uuid4())
 
-                     hash = helper.generate_text_hash(result['question'])
 
-                     qa_document.metadata['answer'] = result['answer']
 
-                     qa_document.metadata['doc_id'] = doc_id
 
-                     qa_document.metadata['doc_hash'] = hash
 
-                     qa_documents.append(qa_document)
 
-                 format_documents.extend(qa_documents)
 
-             except Exception as e:
 
-                 logging.exception(e)
 
-             all_qa_documents.extend(format_documents)
 
-     def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
 
-                                          processing_rule: DatasetProcessRule) -> List[Document]:
 
-         """
 
-         Split the text documents into nodes.
 
-         """
 
-         all_documents = []
 
-         for text_doc in text_docs:
 
-             # document clean
 
-             document_text = self._document_clean(text_doc.page_content, processing_rule)
 
-             text_doc.page_content = document_text
 
-             # parse document to nodes
 
-             documents = splitter.split_documents([text_doc])
 
-             split_documents = []
 
-             for document in documents:
 
-                 if document.page_content is None or not document.page_content.strip():
 
-                     continue
 
-                 doc_id = str(uuid.uuid4())
 
-                 hash = helper.generate_text_hash(document.page_content)
 
-                 document.metadata['doc_id'] = doc_id
 
-                 document.metadata['doc_hash'] = hash
 
-                 split_documents.append(document)
 
-             all_documents.extend(split_documents)
 
-         return all_documents
 
-     def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
 
-         """
 
-         Clean the document text according to the processing rules.
 
-         """
 
-         if processing_rule.mode == "automatic":
 
-             rules = DatasetProcessRule.AUTOMATIC_RULES
 
-         else:
 
-             rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
 
-         if 'pre_processing_rules' in rules:
 
-             pre_processing_rules = rules["pre_processing_rules"]
 
-             for pre_processing_rule in pre_processing_rules:
 
-                 if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
 
-                     # Remove extra spaces
 
-                     pattern = r'\n{3,}'
 
-                     text = re.sub(pattern, '\n\n', text)
 
-                     pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
 
-                     text = re.sub(pattern, ' ', text)
 
-                 elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
 
-                     # Remove email
 
-                     pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
 
-                     text = re.sub(pattern, '', text)
 
-                     # Remove URL
 
-                     pattern = r'https?://[^\s]+'
 
-                     text = re.sub(pattern, '', text)
 
-         return text
 
-     def format_split_text(self, text):
 
-         regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"  # 匹配Q和A的正则表达式
 
-         matches = re.findall(regex, text, re.MULTILINE)  # 获取所有匹配到的结果
 
-         result = []  # 存储最终的结果
 
-         for match in matches:
 
-             q = match[0]
 
-             a = match[1]
 
-             if q and a:
 
-                 # 如果Q和A都存在,就将其添加到结果中
 
-                 result.append({
 
-                     "question": q,
 
-                     "answer": re.sub(r"\n\s*", "\n", a.strip())
 
-                 })
 
-         return result
 
-     def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
 
-         """
 
-         Build the index for the document.
 
-         """
 
-         vector_index = IndexBuilder.get_index(dataset, 'high_quality')
 
-         keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
 
-         embedding_model = None
 
-         if dataset.indexing_technique == 'high_quality':
 
-             embedding_model = ModelFactory.get_embedding_model(
 
-                 tenant_id=dataset.tenant_id,
 
-                 model_provider_name=dataset.embedding_model_provider,
 
-                 model_name=dataset.embedding_model
 
-             )
 
-         # chunk nodes by chunk size
 
-         indexing_start_at = time.perf_counter()
 
-         tokens = 0
 
-         chunk_size = 100
 
-         for i in range(0, len(documents), chunk_size):
 
-             # check document is paused
 
-             self._check_document_paused_status(dataset_document.id)
 
-             chunk_documents = documents[i:i + chunk_size]
 
-             if dataset.indexing_technique == 'high_quality' or embedding_model:
 
-                 tokens += sum(
 
-                     embedding_model.get_num_tokens(document.page_content)
 
-                     for document in chunk_documents
 
-                 )
 
-             # save vector index
 
-             if vector_index:
 
-                 vector_index.add_texts(chunk_documents)
 
-             # save keyword index
 
-             keyword_table_index.add_texts(chunk_documents)
 
-             document_ids = [document.metadata['doc_id'] for document in chunk_documents]
 
-             db.session.query(DocumentSegment).filter(
 
-                 DocumentSegment.document_id == dataset_document.id,
 
-                 DocumentSegment.index_node_id.in_(document_ids),
 
-                 DocumentSegment.status == "indexing"
 
-             ).update({
 
-                 DocumentSegment.status: "completed",
 
-                 DocumentSegment.enabled: True,
 
-                 DocumentSegment.completed_at: datetime.datetime.utcnow()
 
-             })
 
-             db.session.commit()
 
-         indexing_end_at = time.perf_counter()
 
-         # update document status to completed
 
-         self._update_document_index_status(
 
-             document_id=dataset_document.id,
 
-             after_indexing_status="completed",
 
-             extra_update_params={
 
-                 DatasetDocument.tokens: tokens,
 
-                 DatasetDocument.completed_at: datetime.datetime.utcnow(),
 
-                 DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
 
-             }
 
-         )
 
-     def _check_document_paused_status(self, document_id: str):
 
-         indexing_cache_key = 'document_{}_is_paused'.format(document_id)
 
-         result = redis_client.get(indexing_cache_key)
 
-         if result:
 
-             raise DocumentIsPausedException()
 
-     def _update_document_index_status(self, document_id: str, after_indexing_status: str,
 
-                                       extra_update_params: Optional[dict] = None) -> None:
 
-         """
 
-         Update the document indexing status.
 
-         """
 
-         count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
 
-         if count > 0:
 
-             raise DocumentIsPausedException()
 
-         update_params = {
 
-             DatasetDocument.indexing_status: after_indexing_status
 
-         }
 
-         if extra_update_params:
 
-             update_params.update(extra_update_params)
 
-         DatasetDocument.query.filter_by(id=document_id).update(update_params)
 
-         db.session.commit()
 
-     def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
 
-         """
 
-         Update the document segment by document id.
 
-         """
 
-         DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
 
-         db.session.commit()
 
-     def batch_add_segments(self, segments: List[DocumentSegment], dataset: Dataset):
 
-         """
 
-         Batch add segments index processing
 
-         """
 
-         documents = []
 
-         for segment in segments:
 
-             document = Document(
 
-                 page_content=segment.content,
 
-                 metadata={
 
-                     "doc_id": segment.index_node_id,
 
-                     "doc_hash": segment.index_node_hash,
 
-                     "document_id": segment.document_id,
 
-                     "dataset_id": segment.dataset_id,
 
-                 }
 
-             )
 
-             documents.append(document)
 
-         # save vector index
 
-         index = IndexBuilder.get_index(dataset, 'high_quality')
 
-         if index:
 
-             index.add_texts(documents, duplicate_check=True)
 
-         # save keyword index
 
-         index = IndexBuilder.get_index(dataset, 'economy')
 
-         if index:
 
-             index.add_texts(documents)
 
- class DocumentIsPausedException(Exception):
 
-     pass
 
 
  |