fc_agent_runner.py 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446
  1. import json
  2. import logging
  3. from collections.abc import Generator
  4. from copy import deepcopy
  5. from typing import Any, Union
  6. from core.agent.base_agent_runner import BaseAgentRunner
  7. from core.app.apps.base_app_queue_manager import PublishFrom
  8. from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
  9. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
  10. from core.model_runtime.entities.message_entities import (
  11. AssistantPromptMessage,
  12. PromptMessage,
  13. PromptMessageContentType,
  14. SystemPromptMessage,
  15. TextPromptMessageContent,
  16. ToolPromptMessage,
  17. UserPromptMessage,
  18. )
  19. from core.prompt.agent_history_prompt_transform import AgentHistoryPromptTransform
  20. from core.tools.entities.tool_entities import ToolInvokeMeta
  21. from core.tools.tool_engine import ToolEngine
  22. from models.model import Message
  23. logger = logging.getLogger(__name__)
  24. class FunctionCallAgentRunner(BaseAgentRunner):
  25. def run(self,
  26. message: Message, query: str, **kwargs: Any
  27. ) -> Generator[LLMResultChunk, None, None]:
  28. """
  29. Run FunctionCall agent application
  30. """
  31. self.query = query
  32. app_generate_entity = self.application_generate_entity
  33. app_config = self.app_config
  34. # convert tools into ModelRuntime Tool format
  35. tool_instances, prompt_messages_tools = self._init_prompt_tools()
  36. iteration_step = 1
  37. max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
  38. # continue to run until there is not any tool call
  39. function_call_state = True
  40. llm_usage = {
  41. 'usage': None
  42. }
  43. final_answer = ''
  44. # get tracing instance
  45. trace_manager = app_generate_entity.trace_manager
  46. def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
  47. if not final_llm_usage_dict['usage']:
  48. final_llm_usage_dict['usage'] = usage
  49. else:
  50. llm_usage = final_llm_usage_dict['usage']
  51. llm_usage.prompt_tokens += usage.prompt_tokens
  52. llm_usage.completion_tokens += usage.completion_tokens
  53. llm_usage.prompt_price += usage.prompt_price
  54. llm_usage.completion_price += usage.completion_price
  55. model_instance = self.model_instance
  56. while function_call_state and iteration_step <= max_iteration_steps:
  57. function_call_state = False
  58. if iteration_step == max_iteration_steps:
  59. # the last iteration, remove all tools
  60. prompt_messages_tools = []
  61. message_file_ids = []
  62. agent_thought = self.create_agent_thought(
  63. message_id=message.id,
  64. message='',
  65. tool_name='',
  66. tool_input='',
  67. messages_ids=message_file_ids
  68. )
  69. # recalc llm max tokens
  70. prompt_messages = self._organize_prompt_messages()
  71. self.recalc_llm_max_tokens(self.model_config, prompt_messages)
  72. # invoke model
  73. chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
  74. prompt_messages=prompt_messages,
  75. model_parameters=app_generate_entity.model_conf.parameters,
  76. tools=prompt_messages_tools,
  77. stop=app_generate_entity.model_conf.stop,
  78. stream=self.stream_tool_call,
  79. user=self.user_id,
  80. callbacks=[],
  81. )
  82. tool_calls: list[tuple[str, str, dict[str, Any]]] = []
  83. # save full response
  84. response = ''
  85. # save tool call names and inputs
  86. tool_call_names = ''
  87. tool_call_inputs = ''
  88. current_llm_usage = None
  89. if self.stream_tool_call:
  90. is_first_chunk = True
  91. for chunk in chunks:
  92. if is_first_chunk:
  93. self.queue_manager.publish(QueueAgentThoughtEvent(
  94. agent_thought_id=agent_thought.id
  95. ), PublishFrom.APPLICATION_MANAGER)
  96. is_first_chunk = False
  97. # check if there is any tool call
  98. if self.check_tool_calls(chunk):
  99. function_call_state = True
  100. tool_calls.extend(self.extract_tool_calls(chunk))
  101. tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
  102. try:
  103. tool_call_inputs = json.dumps({
  104. tool_call[1]: tool_call[2] for tool_call in tool_calls
  105. }, ensure_ascii=False)
  106. except json.JSONDecodeError as e:
  107. # ensure ascii to avoid encoding error
  108. tool_call_inputs = json.dumps({
  109. tool_call[1]: tool_call[2] for tool_call in tool_calls
  110. })
  111. if chunk.delta.message and chunk.delta.message.content:
  112. if isinstance(chunk.delta.message.content, list):
  113. for content in chunk.delta.message.content:
  114. response += content.data
  115. else:
  116. response += chunk.delta.message.content
  117. if chunk.delta.usage:
  118. increase_usage(llm_usage, chunk.delta.usage)
  119. current_llm_usage = chunk.delta.usage
  120. yield chunk
  121. else:
  122. result: LLMResult = chunks
  123. # check if there is any tool call
  124. if self.check_blocking_tool_calls(result):
  125. function_call_state = True
  126. tool_calls.extend(self.extract_blocking_tool_calls(result))
  127. tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
  128. try:
  129. tool_call_inputs = json.dumps({
  130. tool_call[1]: tool_call[2] for tool_call in tool_calls
  131. }, ensure_ascii=False)
  132. except json.JSONDecodeError as e:
  133. # ensure ascii to avoid encoding error
  134. tool_call_inputs = json.dumps({
  135. tool_call[1]: tool_call[2] for tool_call in tool_calls
  136. })
  137. if result.usage:
  138. increase_usage(llm_usage, result.usage)
  139. current_llm_usage = result.usage
  140. if result.message and result.message.content:
  141. if isinstance(result.message.content, list):
  142. for content in result.message.content:
  143. response += content.data
  144. else:
  145. response += result.message.content
  146. if not result.message.content:
  147. result.message.content = ''
  148. self.queue_manager.publish(QueueAgentThoughtEvent(
  149. agent_thought_id=agent_thought.id
  150. ), PublishFrom.APPLICATION_MANAGER)
  151. yield LLMResultChunk(
  152. model=model_instance.model,
  153. prompt_messages=result.prompt_messages,
  154. system_fingerprint=result.system_fingerprint,
  155. delta=LLMResultChunkDelta(
  156. index=0,
  157. message=result.message,
  158. usage=result.usage,
  159. )
  160. )
  161. assistant_message = AssistantPromptMessage(
  162. content='',
  163. tool_calls=[]
  164. )
  165. if tool_calls:
  166. assistant_message.tool_calls=[
  167. AssistantPromptMessage.ToolCall(
  168. id=tool_call[0],
  169. type='function',
  170. function=AssistantPromptMessage.ToolCall.ToolCallFunction(
  171. name=tool_call[1],
  172. arguments=json.dumps(tool_call[2], ensure_ascii=False)
  173. )
  174. ) for tool_call in tool_calls
  175. ]
  176. else:
  177. assistant_message.content = response
  178. self._current_thoughts.append(assistant_message)
  179. # save thought
  180. self.save_agent_thought(
  181. agent_thought=agent_thought,
  182. tool_name=tool_call_names,
  183. tool_input=tool_call_inputs,
  184. thought=response,
  185. tool_invoke_meta=None,
  186. observation=None,
  187. answer=response,
  188. messages_ids=[],
  189. llm_usage=current_llm_usage
  190. )
  191. self.queue_manager.publish(QueueAgentThoughtEvent(
  192. agent_thought_id=agent_thought.id
  193. ), PublishFrom.APPLICATION_MANAGER)
  194. final_answer += response + '\n'
  195. # call tools
  196. tool_responses = []
  197. for tool_call_id, tool_call_name, tool_call_args in tool_calls:
  198. tool_instance = tool_instances.get(tool_call_name)
  199. if not tool_instance:
  200. tool_response = {
  201. "tool_call_id": tool_call_id,
  202. "tool_call_name": tool_call_name,
  203. "tool_response": f"there is not a tool named {tool_call_name}",
  204. "meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict()
  205. }
  206. else:
  207. # invoke tool
  208. tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
  209. tool=tool_instance,
  210. tool_parameters=tool_call_args,
  211. user_id=self.user_id,
  212. tenant_id=self.tenant_id,
  213. message=self.message,
  214. invoke_from=self.application_generate_entity.invoke_from,
  215. agent_tool_callback=self.agent_callback,
  216. trace_manager=trace_manager,
  217. )
  218. # publish files
  219. for message_file_id, save_as in message_files:
  220. if save_as:
  221. self.variables_pool.set_file(tool_name=tool_call_name, value=message_file_id, name=save_as)
  222. # publish message file
  223. self.queue_manager.publish(QueueMessageFileEvent(
  224. message_file_id=message_file_id
  225. ), PublishFrom.APPLICATION_MANAGER)
  226. # add message file ids
  227. message_file_ids.append(message_file_id)
  228. tool_response = {
  229. "tool_call_id": tool_call_id,
  230. "tool_call_name": tool_call_name,
  231. "tool_response": tool_invoke_response,
  232. "meta": tool_invoke_meta.to_dict()
  233. }
  234. tool_responses.append(tool_response)
  235. if tool_response['tool_response'] is not None:
  236. self._current_thoughts.append(
  237. ToolPromptMessage(
  238. content=tool_response['tool_response'],
  239. tool_call_id=tool_call_id,
  240. name=tool_call_name,
  241. )
  242. )
  243. if len(tool_responses) > 0:
  244. # save agent thought
  245. self.save_agent_thought(
  246. agent_thought=agent_thought,
  247. tool_name=None,
  248. tool_input=None,
  249. thought=None,
  250. tool_invoke_meta={
  251. tool_response['tool_call_name']: tool_response['meta']
  252. for tool_response in tool_responses
  253. },
  254. observation={
  255. tool_response['tool_call_name']: tool_response['tool_response']
  256. for tool_response in tool_responses
  257. },
  258. answer=None,
  259. messages_ids=message_file_ids
  260. )
  261. self.queue_manager.publish(QueueAgentThoughtEvent(
  262. agent_thought_id=agent_thought.id
  263. ), PublishFrom.APPLICATION_MANAGER)
  264. # update prompt tool
  265. for prompt_tool in prompt_messages_tools:
  266. self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
  267. iteration_step += 1
  268. self.update_db_variables(self.variables_pool, self.db_variables_pool)
  269. # publish end event
  270. self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
  271. model=model_instance.model,
  272. prompt_messages=prompt_messages,
  273. message=AssistantPromptMessage(
  274. content=final_answer
  275. ),
  276. usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
  277. system_fingerprint=''
  278. )), PublishFrom.APPLICATION_MANAGER)
  279. def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
  280. """
  281. Check if there is any tool call in llm result chunk
  282. """
  283. if llm_result_chunk.delta.message.tool_calls:
  284. return True
  285. return False
  286. def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
  287. """
  288. Check if there is any blocking tool call in llm result
  289. """
  290. if llm_result.message.tool_calls:
  291. return True
  292. return False
  293. def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
  294. """
  295. Extract tool calls from llm result chunk
  296. Returns:
  297. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  298. """
  299. tool_calls = []
  300. for prompt_message in llm_result_chunk.delta.message.tool_calls:
  301. args = {}
  302. if prompt_message.function.arguments != '':
  303. args = json.loads(prompt_message.function.arguments)
  304. tool_calls.append((
  305. prompt_message.id,
  306. prompt_message.function.name,
  307. args,
  308. ))
  309. return tool_calls
  310. def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
  311. """
  312. Extract blocking tool calls from llm result
  313. Returns:
  314. List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
  315. """
  316. tool_calls = []
  317. for prompt_message in llm_result.message.tool_calls:
  318. args = {}
  319. if prompt_message.function.arguments != '':
  320. args = json.loads(prompt_message.function.arguments)
  321. tool_calls.append((
  322. prompt_message.id,
  323. prompt_message.function.name,
  324. args,
  325. ))
  326. return tool_calls
  327. def _init_system_message(self, prompt_template: str, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
  328. """
  329. Initialize system message
  330. """
  331. if not prompt_messages and prompt_template:
  332. return [
  333. SystemPromptMessage(content=prompt_template),
  334. ]
  335. if prompt_messages and not isinstance(prompt_messages[0], SystemPromptMessage) and prompt_template:
  336. prompt_messages.insert(0, SystemPromptMessage(content=prompt_template))
  337. return prompt_messages
  338. def _organize_user_query(self, query, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
  339. """
  340. Organize user query
  341. """
  342. if self.files:
  343. prompt_message_contents = [TextPromptMessageContent(data=query)]
  344. for file_obj in self.files:
  345. prompt_message_contents.append(file_obj.prompt_message_content)
  346. prompt_messages.append(UserPromptMessage(content=prompt_message_contents))
  347. else:
  348. prompt_messages.append(UserPromptMessage(content=query))
  349. return prompt_messages
  350. def _clear_user_prompt_image_messages(self, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
  351. """
  352. As for now, gpt supports both fc and vision at the first iteration.
  353. We need to remove the image messages from the prompt messages at the first iteration.
  354. """
  355. prompt_messages = deepcopy(prompt_messages)
  356. for prompt_message in prompt_messages:
  357. if isinstance(prompt_message, UserPromptMessage):
  358. if isinstance(prompt_message.content, list):
  359. prompt_message.content = '\n'.join([
  360. content.data if content.type == PromptMessageContentType.TEXT else
  361. '[image]' if content.type == PromptMessageContentType.IMAGE else
  362. '[file]'
  363. for content in prompt_message.content
  364. ])
  365. return prompt_messages
  366. def _organize_prompt_messages(self):
  367. prompt_template = self.app_config.prompt_template.simple_prompt_template or ''
  368. self.history_prompt_messages = self._init_system_message(prompt_template, self.history_prompt_messages)
  369. query_prompt_messages = self._organize_user_query(self.query, [])
  370. self.history_prompt_messages = AgentHistoryPromptTransform(
  371. model_config=self.model_config,
  372. prompt_messages=[*query_prompt_messages, *self._current_thoughts],
  373. history_messages=self.history_prompt_messages,
  374. memory=self.memory
  375. ).get_prompt()
  376. prompt_messages = [
  377. *self.history_prompt_messages,
  378. *query_prompt_messages,
  379. *self._current_thoughts
  380. ]
  381. if len(self._current_thoughts) != 0:
  382. # clear messages after the first iteration
  383. prompt_messages = self._clear_user_prompt_image_messages(prompt_messages)
  384. return prompt_messages