indexing_runner.py 38 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867
  1. import concurrent.futures
  2. import datetime
  3. import json
  4. import logging
  5. import re
  6. import threading
  7. import time
  8. import uuid
  9. from typing import Optional, cast
  10. from flask import Flask, current_app
  11. from flask_login import current_user
  12. from sqlalchemy.orm.exc import ObjectDeletedError
  13. from core.docstore.dataset_docstore import DatasetDocumentStore
  14. from core.errors.error import ProviderTokenNotInitError
  15. from core.llm_generator.llm_generator import LLMGenerator
  16. from core.model_manager import ModelInstance, ModelManager
  17. from core.model_runtime.entities.model_entities import ModelType, PriceType
  18. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  19. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  20. from core.rag.datasource.keyword.keyword_factory import Keyword
  21. from core.rag.extractor.entity.extract_setting import ExtractSetting
  22. from core.rag.index_processor.index_processor_base import BaseIndexProcessor
  23. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  24. from core.rag.models.document import Document
  25. from core.splitter.fixed_text_splitter import EnhanceRecursiveCharacterTextSplitter, FixedRecursiveCharacterTextSplitter
  26. from core.splitter.text_splitter import TextSplitter
  27. from extensions.ext_database import db
  28. from extensions.ext_redis import redis_client
  29. from extensions.ext_storage import storage
  30. from libs import helper
  31. from models.dataset import Dataset, DatasetProcessRule, DocumentSegment
  32. from models.dataset import Document as DatasetDocument
  33. from models.model import UploadFile
  34. from services.feature_service import FeatureService
  35. class IndexingRunner:
  36. def __init__(self):
  37. self.storage = storage
  38. self.model_manager = ModelManager()
  39. def run(self, dataset_documents: list[DatasetDocument]):
  40. """Run the indexing process."""
  41. for dataset_document in dataset_documents:
  42. try:
  43. # get dataset
  44. dataset = Dataset.query.filter_by(
  45. id=dataset_document.dataset_id
  46. ).first()
  47. if not dataset:
  48. raise ValueError("no dataset found")
  49. # get the process rule
  50. processing_rule = db.session.query(DatasetProcessRule). \
  51. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  52. first()
  53. index_type = dataset_document.doc_form
  54. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  55. # extract
  56. text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
  57. # transform
  58. documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
  59. processing_rule.to_dict())
  60. # save segment
  61. self._load_segments(dataset, dataset_document, documents)
  62. # load
  63. self._load(
  64. index_processor=index_processor,
  65. dataset=dataset,
  66. dataset_document=dataset_document,
  67. documents=documents
  68. )
  69. except DocumentIsPausedException:
  70. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  71. except ProviderTokenNotInitError as e:
  72. dataset_document.indexing_status = 'error'
  73. dataset_document.error = str(e.description)
  74. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  75. db.session.commit()
  76. except ObjectDeletedError:
  77. logging.warning('Document deleted, document id: {}'.format(dataset_document.id))
  78. except Exception as e:
  79. logging.exception("consume document failed")
  80. dataset_document.indexing_status = 'error'
  81. dataset_document.error = str(e)
  82. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  83. db.session.commit()
  84. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  85. """Run the indexing process when the index_status is splitting."""
  86. try:
  87. # get dataset
  88. dataset = Dataset.query.filter_by(
  89. id=dataset_document.dataset_id
  90. ).first()
  91. if not dataset:
  92. raise ValueError("no dataset found")
  93. # get exist document_segment list and delete
  94. document_segments = DocumentSegment.query.filter_by(
  95. dataset_id=dataset.id,
  96. document_id=dataset_document.id
  97. ).all()
  98. for document_segment in document_segments:
  99. db.session.delete(document_segment)
  100. db.session.commit()
  101. # get the process rule
  102. processing_rule = db.session.query(DatasetProcessRule). \
  103. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  104. first()
  105. index_type = dataset_document.doc_form
  106. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  107. # extract
  108. text_docs = self._extract(index_processor, dataset_document, processing_rule.to_dict())
  109. # transform
  110. documents = self._transform(index_processor, dataset, text_docs, dataset_document.doc_language,
  111. processing_rule.to_dict())
  112. # save segment
  113. self._load_segments(dataset, dataset_document, documents)
  114. # load
  115. self._load(
  116. index_processor=index_processor,
  117. dataset=dataset,
  118. dataset_document=dataset_document,
  119. documents=documents
  120. )
  121. except DocumentIsPausedException:
  122. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  123. except ProviderTokenNotInitError as e:
  124. dataset_document.indexing_status = 'error'
  125. dataset_document.error = str(e.description)
  126. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  127. db.session.commit()
  128. except Exception as e:
  129. logging.exception("consume document failed")
  130. dataset_document.indexing_status = 'error'
  131. dataset_document.error = str(e)
  132. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  133. db.session.commit()
  134. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  135. """Run the indexing process when the index_status is indexing."""
  136. try:
  137. # get dataset
  138. dataset = Dataset.query.filter_by(
  139. id=dataset_document.dataset_id
  140. ).first()
  141. if not dataset:
  142. raise ValueError("no dataset found")
  143. # get exist document_segment list and delete
  144. document_segments = DocumentSegment.query.filter_by(
  145. dataset_id=dataset.id,
  146. document_id=dataset_document.id
  147. ).all()
  148. documents = []
  149. if document_segments:
  150. for document_segment in document_segments:
  151. # transform segment to node
  152. if document_segment.status != "completed":
  153. document = Document(
  154. page_content=document_segment.content,
  155. metadata={
  156. "doc_id": document_segment.index_node_id,
  157. "doc_hash": document_segment.index_node_hash,
  158. "document_id": document_segment.document_id,
  159. "dataset_id": document_segment.dataset_id,
  160. }
  161. )
  162. documents.append(document)
  163. # build index
  164. # get the process rule
  165. processing_rule = db.session.query(DatasetProcessRule). \
  166. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  167. first()
  168. index_type = dataset_document.doc_form
  169. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  170. self._load(
  171. index_processor=index_processor,
  172. dataset=dataset,
  173. dataset_document=dataset_document,
  174. documents=documents
  175. )
  176. except DocumentIsPausedException:
  177. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  178. except ProviderTokenNotInitError as e:
  179. dataset_document.indexing_status = 'error'
  180. dataset_document.error = str(e.description)
  181. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  182. db.session.commit()
  183. except Exception as e:
  184. logging.exception("consume document failed")
  185. dataset_document.indexing_status = 'error'
  186. dataset_document.error = str(e)
  187. dataset_document.stopped_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  188. db.session.commit()
  189. def indexing_estimate(self, tenant_id: str, extract_settings: list[ExtractSetting], tmp_processing_rule: dict,
  190. doc_form: str = None, doc_language: str = 'English', dataset_id: str = None,
  191. indexing_technique: str = 'economy') -> dict:
  192. """
  193. Estimate the indexing for the document.
  194. """
  195. # check document limit
  196. features = FeatureService.get_features(tenant_id)
  197. if features.billing.enabled:
  198. count = len(extract_settings)
  199. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  200. if count > batch_upload_limit:
  201. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  202. embedding_model_instance = None
  203. if dataset_id:
  204. dataset = Dataset.query.filter_by(
  205. id=dataset_id
  206. ).first()
  207. if not dataset:
  208. raise ValueError('Dataset not found.')
  209. if dataset.indexing_technique == 'high_quality' or indexing_technique == 'high_quality':
  210. if dataset.embedding_model_provider:
  211. embedding_model_instance = self.model_manager.get_model_instance(
  212. tenant_id=tenant_id,
  213. provider=dataset.embedding_model_provider,
  214. model_type=ModelType.TEXT_EMBEDDING,
  215. model=dataset.embedding_model
  216. )
  217. else:
  218. embedding_model_instance = self.model_manager.get_default_model_instance(
  219. tenant_id=tenant_id,
  220. model_type=ModelType.TEXT_EMBEDDING,
  221. )
  222. else:
  223. if indexing_technique == 'high_quality':
  224. embedding_model_instance = self.model_manager.get_default_model_instance(
  225. tenant_id=tenant_id,
  226. model_type=ModelType.TEXT_EMBEDDING,
  227. )
  228. tokens = 0
  229. preview_texts = []
  230. total_segments = 0
  231. total_price = 0
  232. currency = 'USD'
  233. index_type = doc_form
  234. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  235. all_text_docs = []
  236. for extract_setting in extract_settings:
  237. # extract
  238. text_docs = index_processor.extract(extract_setting, process_rule_mode=tmp_processing_rule["mode"])
  239. all_text_docs.extend(text_docs)
  240. processing_rule = DatasetProcessRule(
  241. mode=tmp_processing_rule["mode"],
  242. rules=json.dumps(tmp_processing_rule["rules"])
  243. )
  244. # get splitter
  245. splitter = self._get_splitter(processing_rule, embedding_model_instance)
  246. # split to documents
  247. documents = self._split_to_documents_for_estimate(
  248. text_docs=text_docs,
  249. splitter=splitter,
  250. processing_rule=processing_rule
  251. )
  252. total_segments += len(documents)
  253. for document in documents:
  254. if len(preview_texts) < 5:
  255. preview_texts.append(document.page_content)
  256. if indexing_technique == 'high_quality' or embedding_model_instance:
  257. embedding_model_type_instance = embedding_model_instance.model_type_instance
  258. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  259. tokens += embedding_model_type_instance.get_num_tokens(
  260. model=embedding_model_instance.model,
  261. credentials=embedding_model_instance.credentials,
  262. texts=[self.filter_string(document.page_content)]
  263. )
  264. if doc_form and doc_form == 'qa_model':
  265. model_instance = self.model_manager.get_default_model_instance(
  266. tenant_id=tenant_id,
  267. model_type=ModelType.LLM
  268. )
  269. model_type_instance = model_instance.model_type_instance
  270. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  271. if len(preview_texts) > 0:
  272. # qa model document
  273. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0],
  274. doc_language)
  275. document_qa_list = self.format_split_text(response)
  276. price_info = model_type_instance.get_price(
  277. model=model_instance.model,
  278. credentials=model_instance.credentials,
  279. price_type=PriceType.INPUT,
  280. tokens=total_segments * 2000,
  281. )
  282. return {
  283. "total_segments": total_segments * 20,
  284. "tokens": total_segments * 2000,
  285. "total_price": '{:f}'.format(price_info.total_amount),
  286. "currency": price_info.currency,
  287. "qa_preview": document_qa_list,
  288. "preview": preview_texts
  289. }
  290. if embedding_model_instance:
  291. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_instance.model_type_instance)
  292. embedding_price_info = embedding_model_type_instance.get_price(
  293. model=embedding_model_instance.model,
  294. credentials=embedding_model_instance.credentials,
  295. price_type=PriceType.INPUT,
  296. tokens=tokens
  297. )
  298. total_price = '{:f}'.format(embedding_price_info.total_amount)
  299. currency = embedding_price_info.currency
  300. return {
  301. "total_segments": total_segments,
  302. "tokens": tokens,
  303. "total_price": total_price,
  304. "currency": currency,
  305. "preview": preview_texts
  306. }
  307. def _extract(self, index_processor: BaseIndexProcessor, dataset_document: DatasetDocument, process_rule: dict) \
  308. -> list[Document]:
  309. # load file
  310. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  311. return []
  312. data_source_info = dataset_document.data_source_info_dict
  313. text_docs = []
  314. if dataset_document.data_source_type == 'upload_file':
  315. if not data_source_info or 'upload_file_id' not in data_source_info:
  316. raise ValueError("no upload file found")
  317. file_detail = db.session.query(UploadFile). \
  318. filter(UploadFile.id == data_source_info['upload_file_id']). \
  319. one_or_none()
  320. if file_detail:
  321. extract_setting = ExtractSetting(
  322. datasource_type="upload_file",
  323. upload_file=file_detail,
  324. document_model=dataset_document.doc_form
  325. )
  326. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
  327. elif dataset_document.data_source_type == 'notion_import':
  328. if (not data_source_info or 'notion_workspace_id' not in data_source_info
  329. or 'notion_page_id' not in data_source_info):
  330. raise ValueError("no notion import info found")
  331. extract_setting = ExtractSetting(
  332. datasource_type="notion_import",
  333. notion_info={
  334. "notion_workspace_id": data_source_info['notion_workspace_id'],
  335. "notion_obj_id": data_source_info['notion_page_id'],
  336. "notion_page_type": data_source_info['type'],
  337. "document": dataset_document,
  338. "tenant_id": dataset_document.tenant_id
  339. },
  340. document_model=dataset_document.doc_form
  341. )
  342. text_docs = index_processor.extract(extract_setting, process_rule_mode=process_rule['mode'])
  343. # update document status to splitting
  344. self._update_document_index_status(
  345. document_id=dataset_document.id,
  346. after_indexing_status="splitting",
  347. extra_update_params={
  348. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  349. DatasetDocument.parsing_completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  350. }
  351. )
  352. # replace doc id to document model id
  353. text_docs = cast(list[Document], text_docs)
  354. for text_doc in text_docs:
  355. text_doc.metadata['document_id'] = dataset_document.id
  356. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  357. return text_docs
  358. def filter_string(self, text):
  359. text = re.sub(r'<\|', '<', text)
  360. text = re.sub(r'\|>', '>', text)
  361. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\xEF\xBF\xBE]', '', text)
  362. # Unicode U+FFFE
  363. text = re.sub('\uFFFE', '', text)
  364. return text
  365. def _get_splitter(self, processing_rule: DatasetProcessRule,
  366. embedding_model_instance: Optional[ModelInstance]) -> TextSplitter:
  367. """
  368. Get the NodeParser object according to the processing rule.
  369. """
  370. if processing_rule.mode == "custom":
  371. # The user-defined segmentation rule
  372. rules = json.loads(processing_rule.rules)
  373. segmentation = rules["segmentation"]
  374. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  375. raise ValueError("Custom segment length should be between 50 and 1000.")
  376. separator = segmentation["separator"]
  377. if separator:
  378. separator = separator.replace('\\n', '\n')
  379. if 'chunk_overlap' in segmentation and segmentation['chunk_overlap']:
  380. chunk_overlap = segmentation['chunk_overlap']
  381. else:
  382. chunk_overlap = 0
  383. character_splitter = FixedRecursiveCharacterTextSplitter.from_encoder(
  384. chunk_size=segmentation["max_tokens"],
  385. chunk_overlap=chunk_overlap,
  386. fixed_separator=separator,
  387. separators=["\n\n", "。", ".", " ", ""],
  388. embedding_model_instance=embedding_model_instance
  389. )
  390. else:
  391. # Automatic segmentation
  392. character_splitter = EnhanceRecursiveCharacterTextSplitter.from_encoder(
  393. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  394. chunk_overlap=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['chunk_overlap'],
  395. separators=["\n\n", "。", ".", " ", ""],
  396. embedding_model_instance=embedding_model_instance
  397. )
  398. return character_splitter
  399. def _step_split(self, text_docs: list[Document], splitter: TextSplitter,
  400. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  401. -> list[Document]:
  402. """
  403. Split the text documents into documents and save them to the document segment.
  404. """
  405. documents = self._split_to_documents(
  406. text_docs=text_docs,
  407. splitter=splitter,
  408. processing_rule=processing_rule,
  409. tenant_id=dataset.tenant_id,
  410. document_form=dataset_document.doc_form,
  411. document_language=dataset_document.doc_language
  412. )
  413. # save node to document segment
  414. doc_store = DatasetDocumentStore(
  415. dataset=dataset,
  416. user_id=dataset_document.created_by,
  417. document_id=dataset_document.id
  418. )
  419. # add document segments
  420. doc_store.add_documents(documents)
  421. # update document status to indexing
  422. cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  423. self._update_document_index_status(
  424. document_id=dataset_document.id,
  425. after_indexing_status="indexing",
  426. extra_update_params={
  427. DatasetDocument.cleaning_completed_at: cur_time,
  428. DatasetDocument.splitting_completed_at: cur_time,
  429. }
  430. )
  431. # update segment status to indexing
  432. self._update_segments_by_document(
  433. dataset_document_id=dataset_document.id,
  434. update_params={
  435. DocumentSegment.status: "indexing",
  436. DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  437. }
  438. )
  439. return documents
  440. def _split_to_documents(self, text_docs: list[Document], splitter: TextSplitter,
  441. processing_rule: DatasetProcessRule, tenant_id: str,
  442. document_form: str, document_language: str) -> list[Document]:
  443. """
  444. Split the text documents into nodes.
  445. """
  446. all_documents = []
  447. all_qa_documents = []
  448. for text_doc in text_docs:
  449. # document clean
  450. document_text = self._document_clean(text_doc.page_content, processing_rule)
  451. text_doc.page_content = document_text
  452. # parse document to nodes
  453. documents = splitter.split_documents([text_doc])
  454. split_documents = []
  455. for document_node in documents:
  456. if document_node.page_content.strip():
  457. doc_id = str(uuid.uuid4())
  458. hash = helper.generate_text_hash(document_node.page_content)
  459. document_node.metadata['doc_id'] = doc_id
  460. document_node.metadata['doc_hash'] = hash
  461. # delete Spliter character
  462. page_content = document_node.page_content
  463. if page_content.startswith(".") or page_content.startswith("。"):
  464. page_content = page_content[1:]
  465. else:
  466. page_content = page_content
  467. document_node.page_content = page_content
  468. if document_node.page_content:
  469. split_documents.append(document_node)
  470. all_documents.extend(split_documents)
  471. # processing qa document
  472. if document_form == 'qa_model':
  473. for i in range(0, len(all_documents), 10):
  474. threads = []
  475. sub_documents = all_documents[i:i + 10]
  476. for doc in sub_documents:
  477. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  478. 'flask_app': current_app._get_current_object(),
  479. 'tenant_id': tenant_id, 'document_node': doc, 'all_qa_documents': all_qa_documents,
  480. 'document_language': document_language})
  481. threads.append(document_format_thread)
  482. document_format_thread.start()
  483. for thread in threads:
  484. thread.join()
  485. return all_qa_documents
  486. return all_documents
  487. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents, document_language):
  488. format_documents = []
  489. if document_node.page_content is None or not document_node.page_content.strip():
  490. return
  491. with flask_app.app_context():
  492. try:
  493. # qa model document
  494. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content, document_language)
  495. document_qa_list = self.format_split_text(response)
  496. qa_documents = []
  497. for result in document_qa_list:
  498. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  499. doc_id = str(uuid.uuid4())
  500. hash = helper.generate_text_hash(result['question'])
  501. qa_document.metadata['answer'] = result['answer']
  502. qa_document.metadata['doc_id'] = doc_id
  503. qa_document.metadata['doc_hash'] = hash
  504. qa_documents.append(qa_document)
  505. format_documents.extend(qa_documents)
  506. except Exception as e:
  507. logging.exception(e)
  508. all_qa_documents.extend(format_documents)
  509. def _split_to_documents_for_estimate(self, text_docs: list[Document], splitter: TextSplitter,
  510. processing_rule: DatasetProcessRule) -> list[Document]:
  511. """
  512. Split the text documents into nodes.
  513. """
  514. all_documents = []
  515. for text_doc in text_docs:
  516. # document clean
  517. document_text = self._document_clean(text_doc.page_content, processing_rule)
  518. text_doc.page_content = document_text
  519. # parse document to nodes
  520. documents = splitter.split_documents([text_doc])
  521. split_documents = []
  522. for document in documents:
  523. if document.page_content is None or not document.page_content.strip():
  524. continue
  525. doc_id = str(uuid.uuid4())
  526. hash = helper.generate_text_hash(document.page_content)
  527. document.metadata['doc_id'] = doc_id
  528. document.metadata['doc_hash'] = hash
  529. split_documents.append(document)
  530. all_documents.extend(split_documents)
  531. return all_documents
  532. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  533. """
  534. Clean the document text according to the processing rules.
  535. """
  536. if processing_rule.mode == "automatic":
  537. rules = DatasetProcessRule.AUTOMATIC_RULES
  538. else:
  539. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  540. if 'pre_processing_rules' in rules:
  541. pre_processing_rules = rules["pre_processing_rules"]
  542. for pre_processing_rule in pre_processing_rules:
  543. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  544. # Remove extra spaces
  545. pattern = r'\n{3,}'
  546. text = re.sub(pattern, '\n\n', text)
  547. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  548. text = re.sub(pattern, ' ', text)
  549. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  550. # Remove email
  551. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  552. text = re.sub(pattern, '', text)
  553. # Remove URL
  554. pattern = r'https?://[^\s]+'
  555. text = re.sub(pattern, '', text)
  556. return text
  557. def format_split_text(self, text):
  558. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q\d+:|$)"
  559. matches = re.findall(regex, text, re.UNICODE)
  560. return [
  561. {
  562. "question": q,
  563. "answer": re.sub(r"\n\s*", "\n", a.strip())
  564. }
  565. for q, a in matches if q and a
  566. ]
  567. def _load(self, index_processor: BaseIndexProcessor, dataset: Dataset,
  568. dataset_document: DatasetDocument, documents: list[Document]) -> None:
  569. """
  570. insert index and update document/segment status to completed
  571. """
  572. embedding_model_instance = None
  573. if dataset.indexing_technique == 'high_quality':
  574. embedding_model_instance = self.model_manager.get_model_instance(
  575. tenant_id=dataset.tenant_id,
  576. provider=dataset.embedding_model_provider,
  577. model_type=ModelType.TEXT_EMBEDDING,
  578. model=dataset.embedding_model
  579. )
  580. # chunk nodes by chunk size
  581. indexing_start_at = time.perf_counter()
  582. tokens = 0
  583. chunk_size = 10
  584. embedding_model_type_instance = None
  585. if embedding_model_instance:
  586. embedding_model_type_instance = embedding_model_instance.model_type_instance
  587. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  588. # create keyword index
  589. create_keyword_thread = threading.Thread(target=self._process_keyword_index,
  590. args=(current_app._get_current_object(),
  591. dataset.id, dataset_document.id, documents))
  592. create_keyword_thread.start()
  593. if dataset.indexing_technique == 'high_quality':
  594. with concurrent.futures.ThreadPoolExecutor(max_workers=10) as executor:
  595. futures = []
  596. for i in range(0, len(documents), chunk_size):
  597. chunk_documents = documents[i:i + chunk_size]
  598. futures.append(executor.submit(self._process_chunk, current_app._get_current_object(), index_processor,
  599. chunk_documents, dataset,
  600. dataset_document, embedding_model_instance,
  601. embedding_model_type_instance))
  602. for future in futures:
  603. tokens += future.result()
  604. create_keyword_thread.join()
  605. indexing_end_at = time.perf_counter()
  606. # update document status to completed
  607. self._update_document_index_status(
  608. document_id=dataset_document.id,
  609. after_indexing_status="completed",
  610. extra_update_params={
  611. DatasetDocument.tokens: tokens,
  612. DatasetDocument.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  613. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  614. }
  615. )
  616. def _process_keyword_index(self, flask_app, dataset_id, document_id, documents):
  617. with flask_app.app_context():
  618. dataset = Dataset.query.filter_by(id=dataset_id).first()
  619. if not dataset:
  620. raise ValueError("no dataset found")
  621. keyword = Keyword(dataset)
  622. keyword.create(documents)
  623. if dataset.indexing_technique != 'high_quality':
  624. document_ids = [document.metadata['doc_id'] for document in documents]
  625. db.session.query(DocumentSegment).filter(
  626. DocumentSegment.document_id == document_id,
  627. DocumentSegment.index_node_id.in_(document_ids),
  628. DocumentSegment.status == "indexing"
  629. ).update({
  630. DocumentSegment.status: "completed",
  631. DocumentSegment.enabled: True,
  632. DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  633. })
  634. db.session.commit()
  635. def _process_chunk(self, flask_app, index_processor, chunk_documents, dataset, dataset_document,
  636. embedding_model_instance, embedding_model_type_instance):
  637. with flask_app.app_context():
  638. # check document is paused
  639. self._check_document_paused_status(dataset_document.id)
  640. tokens = 0
  641. if dataset.indexing_technique == 'high_quality' or embedding_model_type_instance:
  642. tokens += sum(
  643. embedding_model_type_instance.get_num_tokens(
  644. embedding_model_instance.model,
  645. embedding_model_instance.credentials,
  646. [document.page_content]
  647. )
  648. for document in chunk_documents
  649. )
  650. # load index
  651. index_processor.load(dataset, chunk_documents, with_keywords=False)
  652. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  653. db.session.query(DocumentSegment).filter(
  654. DocumentSegment.document_id == dataset_document.id,
  655. DocumentSegment.index_node_id.in_(document_ids),
  656. DocumentSegment.status == "indexing"
  657. ).update({
  658. DocumentSegment.status: "completed",
  659. DocumentSegment.enabled: True,
  660. DocumentSegment.completed_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  661. })
  662. db.session.commit()
  663. return tokens
  664. def _check_document_paused_status(self, document_id: str):
  665. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  666. result = redis_client.get(indexing_cache_key)
  667. if result:
  668. raise DocumentIsPausedException()
  669. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  670. extra_update_params: Optional[dict] = None) -> None:
  671. """
  672. Update the document indexing status.
  673. """
  674. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  675. if count > 0:
  676. raise DocumentIsPausedException()
  677. document = DatasetDocument.query.filter_by(id=document_id).first()
  678. if not document:
  679. raise DocumentIsDeletedPausedException()
  680. update_params = {
  681. DatasetDocument.indexing_status: after_indexing_status
  682. }
  683. if extra_update_params:
  684. update_params.update(extra_update_params)
  685. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  686. db.session.commit()
  687. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  688. """
  689. Update the document segment by document id.
  690. """
  691. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  692. db.session.commit()
  693. def batch_add_segments(self, segments: list[DocumentSegment], dataset: Dataset):
  694. """
  695. Batch add segments index processing
  696. """
  697. documents = []
  698. for segment in segments:
  699. document = Document(
  700. page_content=segment.content,
  701. metadata={
  702. "doc_id": segment.index_node_id,
  703. "doc_hash": segment.index_node_hash,
  704. "document_id": segment.document_id,
  705. "dataset_id": segment.dataset_id,
  706. }
  707. )
  708. documents.append(document)
  709. # save vector index
  710. index_type = dataset.doc_form
  711. index_processor = IndexProcessorFactory(index_type).init_index_processor()
  712. index_processor.load(dataset, documents)
  713. def _transform(self, index_processor: BaseIndexProcessor, dataset: Dataset,
  714. text_docs: list[Document], doc_language: str, process_rule: dict) -> list[Document]:
  715. # get embedding model instance
  716. embedding_model_instance = None
  717. if dataset.indexing_technique == 'high_quality':
  718. if dataset.embedding_model_provider:
  719. embedding_model_instance = self.model_manager.get_model_instance(
  720. tenant_id=dataset.tenant_id,
  721. provider=dataset.embedding_model_provider,
  722. model_type=ModelType.TEXT_EMBEDDING,
  723. model=dataset.embedding_model
  724. )
  725. else:
  726. embedding_model_instance = self.model_manager.get_default_model_instance(
  727. tenant_id=dataset.tenant_id,
  728. model_type=ModelType.TEXT_EMBEDDING,
  729. )
  730. documents = index_processor.transform(text_docs, embedding_model_instance=embedding_model_instance,
  731. process_rule=process_rule, tenant_id=dataset.tenant_id,
  732. doc_language=doc_language)
  733. return documents
  734. def _load_segments(self, dataset, dataset_document, documents):
  735. # save node to document segment
  736. doc_store = DatasetDocumentStore(
  737. dataset=dataset,
  738. user_id=dataset_document.created_by,
  739. document_id=dataset_document.id
  740. )
  741. # add document segments
  742. doc_store.add_documents(documents)
  743. # update document status to indexing
  744. cur_time = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  745. self._update_document_index_status(
  746. document_id=dataset_document.id,
  747. after_indexing_status="indexing",
  748. extra_update_params={
  749. DatasetDocument.cleaning_completed_at: cur_time,
  750. DatasetDocument.splitting_completed_at: cur_time,
  751. }
  752. )
  753. # update segment status to indexing
  754. self._update_segments_by_document(
  755. dataset_document_id=dataset_document.id,
  756. update_params={
  757. DocumentSegment.status: "indexing",
  758. DocumentSegment.indexing_at: datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  759. }
  760. )
  761. pass
  762. class DocumentIsPausedException(Exception):
  763. pass
  764. class DocumentIsDeletedPausedException(Exception):
  765. pass