123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- from typing import Any, Dict, Optional, Sequence
- import tiktoken
- from llama_index.data_structs import Node
- from llama_index.docstore.types import BaseDocumentStore
- from llama_index.docstore.utils import json_to_doc
- from llama_index.schema import BaseDocument
- from sqlalchemy import func
- from core.llm.token_calculator import TokenCalculator
- from extensions.ext_database import db
- from models.dataset import Dataset, DocumentSegment
- class DatesetDocumentStore(BaseDocumentStore):
- def __init__(
- self,
- dataset: Dataset,
- user_id: str,
- embedding_model_name: str,
- document_id: Optional[str] = None,
- ):
- self._dataset = dataset
- self._user_id = user_id
- self._embedding_model_name = embedding_model_name
- self._document_id = document_id
- @classmethod
- def from_dict(cls, config_dict: Dict[str, Any]) -> "DatesetDocumentStore":
- return cls(**config_dict)
- def to_dict(self) -> Dict[str, Any]:
- """Serialize to dict."""
- return {
- "dataset_id": self._dataset.id,
- }
- @property
- def dateset_id(self) -> Any:
- return self._dataset.id
- @property
- def user_id(self) -> Any:
- return self._user_id
- @property
- def embedding_model_name(self) -> Any:
- return self._embedding_model_name
- @property
- def docs(self) -> Dict[str, BaseDocument]:
- document_segments = db.session.query(DocumentSegment).filter(
- DocumentSegment.dataset_id == self._dataset.id
- ).all()
- output = {}
- for document_segment in document_segments:
- doc_id = document_segment.index_node_id
- result = self.segment_to_dict(document_segment)
- output[doc_id] = json_to_doc(result)
- return output
- def add_documents(
- self, docs: Sequence[BaseDocument], allow_update: bool = True
- ) -> None:
- max_position = db.session.query(func.max(DocumentSegment.position)).filter(
- DocumentSegment.document == self._document_id
- ).scalar()
- if max_position is None:
- max_position = 0
- for doc in docs:
- if doc.is_doc_id_none:
- raise ValueError("doc_id not set")
- if not isinstance(doc, Node):
- raise ValueError("doc must be a Node")
- segment_document = self.get_document(doc_id=doc.get_doc_id(), raise_error=False)
- # NOTE: doc could already exist in the store, but we overwrite it
- if not allow_update and segment_document:
- raise ValueError(
- f"doc_id {doc.get_doc_id()} already exists. "
- "Set allow_update to True to overwrite."
- )
- # calc embedding use tokens
- tokens = TokenCalculator.get_num_tokens(self._embedding_model_name, doc.get_text())
- if not segment_document:
- max_position += 1
- segment_document = DocumentSegment(
- tenant_id=self._dataset.tenant_id,
- dataset_id=self._dataset.id,
- document_id=self._document_id,
- index_node_id=doc.get_doc_id(),
- index_node_hash=doc.get_doc_hash(),
- position=max_position,
- content=doc.get_text(),
- word_count=len(doc.get_text()),
- tokens=tokens,
- created_by=self._user_id,
- )
- db.session.add(segment_document)
- else:
- segment_document.content = doc.get_text()
- segment_document.index_node_hash = doc.get_doc_hash()
- segment_document.word_count = len(doc.get_text())
- segment_document.tokens = tokens
- db.session.commit()
- def document_exists(self, doc_id: str) -> bool:
- """Check if document exists."""
- result = self.get_document_segment(doc_id)
- return result is not None
- def get_document(
- self, doc_id: str, raise_error: bool = True
- ) -> Optional[BaseDocument]:
- document_segment = self.get_document_segment(doc_id)
- if document_segment is None:
- if raise_error:
- raise ValueError(f"doc_id {doc_id} not found.")
- else:
- return None
- result = self.segment_to_dict(document_segment)
- return json_to_doc(result)
- def delete_document(self, doc_id: str, raise_error: bool = True) -> None:
- document_segment = self.get_document_segment(doc_id)
- if document_segment is None:
- if raise_error:
- raise ValueError(f"doc_id {doc_id} not found.")
- else:
- return None
- db.session.delete(document_segment)
- db.session.commit()
- def set_document_hash(self, doc_id: str, doc_hash: str) -> None:
- """Set the hash for a given doc_id."""
- document_segment = self.get_document_segment(doc_id)
- if document_segment is None:
- return None
- document_segment.index_node_hash = doc_hash
- db.session.commit()
- def get_document_hash(self, doc_id: str) -> Optional[str]:
- """Get the stored hash for a document, if it exists."""
- document_segment = self.get_document_segment(doc_id)
- if document_segment is None:
- return None
- return document_segment.index_node_hash
- def update_docstore(self, other: "BaseDocumentStore") -> None:
- """Update docstore.
- Args:
- other (BaseDocumentStore): docstore to update from
- """
- self.add_documents(list(other.docs.values()))
- def get_document_segment(self, doc_id: str) -> DocumentSegment:
- document_segment = db.session.query(DocumentSegment).filter(
- DocumentSegment.dataset_id == self._dataset.id,
- DocumentSegment.index_node_id == doc_id
- ).first()
- return document_segment
- def segment_to_dict(self, segment: DocumentSegment) -> Dict[str, Any]:
- return {
- "doc_id": segment.index_node_id,
- "doc_hash": segment.index_node_hash,
- "text": segment.content,
- "__type__": Node.get_type()
- }
|