dataset.py 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889
  1. import services.dataset_service
  2. from controllers.service_api import api
  3. from controllers.service_api.dataset.error import DatasetNameDuplicateError
  4. from controllers.service_api.wraps import DatasetApiResource
  5. from core.model_runtime.entities.model_entities import ModelType
  6. from core.provider_manager import ProviderManager
  7. from fields.dataset_fields import dataset_detail_fields
  8. from flask import request
  9. from flask_restful import marshal, reqparse
  10. from libs.login import current_user
  11. from services.dataset_service import DatasetService
  12. def _validate_name(name):
  13. if not name or len(name) < 1 or len(name) > 40:
  14. raise ValueError('Name must be between 1 to 40 characters.')
  15. return name
  16. class DatasetApi(DatasetApiResource):
  17. """Resource for get datasets."""
  18. def get(self, tenant_id):
  19. page = request.args.get('page', default=1, type=int)
  20. limit = request.args.get('limit', default=20, type=int)
  21. provider = request.args.get('provider', default="vendor")
  22. datasets, total = DatasetService.get_datasets(page, limit, provider,
  23. tenant_id, current_user)
  24. # check embedding setting
  25. provider_manager = ProviderManager()
  26. configurations = provider_manager.get_configurations(
  27. tenant_id=current_user.current_tenant_id
  28. )
  29. embedding_models = configurations.get_models(
  30. model_type=ModelType.TEXT_EMBEDDING,
  31. only_active=True
  32. )
  33. model_names = []
  34. for embedding_model in embedding_models:
  35. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  36. data = marshal(datasets, dataset_detail_fields)
  37. for item in data:
  38. if item['indexing_technique'] == 'high_quality':
  39. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  40. if item_model in model_names:
  41. item['embedding_available'] = True
  42. else:
  43. item['embedding_available'] = False
  44. else:
  45. item['embedding_available'] = True
  46. response = {
  47. 'data': data,
  48. 'has_more': len(datasets) == limit,
  49. 'limit': limit,
  50. 'total': total,
  51. 'page': page
  52. }
  53. return response, 200
  54. """Resource for datasets."""
  55. def post(self, tenant_id):
  56. parser = reqparse.RequestParser()
  57. parser.add_argument('name', nullable=False, required=True,
  58. help='type is required. Name must be between 1 to 40 characters.',
  59. type=_validate_name)
  60. parser.add_argument('indexing_technique', type=str, location='json',
  61. choices=('high_quality', 'economy'),
  62. help='Invalid indexing technique.')
  63. args = parser.parse_args()
  64. try:
  65. dataset = DatasetService.create_empty_dataset(
  66. tenant_id=tenant_id,
  67. name=args['name'],
  68. indexing_technique=args['indexing_technique'],
  69. account=current_user
  70. )
  71. except services.errors.dataset.DatasetNameDuplicateError:
  72. raise DatasetNameDuplicateError()
  73. return marshal(dataset, dataset_detail_fields), 200
  74. api.add_resource(DatasetApi, '/datasets')