datasets.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507
  1. # -*- coding:utf-8 -*-
  2. import flask_restful
  3. import services
  4. from controllers.console import api
  5. from controllers.console.apikey import api_key_fields, api_key_list
  6. from controllers.console.app.error import ProviderNotInitializeError
  7. from controllers.console.datasets.error import DatasetNameDuplicateError
  8. from controllers.console.setup import setup_required
  9. from controllers.console.wraps import account_initialization_required
  10. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  11. from core.indexing_runner import IndexingRunner
  12. from core.model_runtime.entities.model_entities import ModelType
  13. from core.provider_manager import ProviderManager
  14. from extensions.ext_database import db
  15. from fields.app_fields import related_app_list
  16. from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
  17. from fields.document_fields import document_status_fields
  18. from flask import current_app, request
  19. from flask_login import current_user
  20. from flask_restful import Resource, marshal, marshal_with, reqparse
  21. from libs.login import login_required
  22. from models.dataset import Document, DocumentSegment
  23. from models.model import ApiToken, UploadFile
  24. from services.dataset_service import DatasetService, DocumentService
  25. from werkzeug.exceptions import Forbidden, NotFound
  26. def _validate_name(name):
  27. if not name or len(name) < 1 or len(name) > 40:
  28. raise ValueError('Name must be between 1 to 40 characters.')
  29. return name
  30. def _validate_description_length(description):
  31. if len(description) > 400:
  32. raise ValueError('Description cannot exceed 400 characters.')
  33. return description
  34. class DatasetListApi(Resource):
  35. @setup_required
  36. @login_required
  37. @account_initialization_required
  38. def get(self):
  39. page = request.args.get('page', default=1, type=int)
  40. limit = request.args.get('limit', default=20, type=int)
  41. ids = request.args.getlist('ids')
  42. provider = request.args.get('provider', default="vendor")
  43. if ids:
  44. datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
  45. else:
  46. datasets, total = DatasetService.get_datasets(page, limit, provider,
  47. current_user.current_tenant_id, current_user)
  48. # check embedding setting
  49. provider_manager = ProviderManager()
  50. configurations = provider_manager.get_configurations(
  51. tenant_id=current_user.current_tenant_id
  52. )
  53. embedding_models = configurations.get_models(
  54. model_type=ModelType.TEXT_EMBEDDING,
  55. only_active=True
  56. )
  57. model_names = []
  58. for embedding_model in embedding_models:
  59. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  60. data = marshal(datasets, dataset_detail_fields)
  61. for item in data:
  62. if item['indexing_technique'] == 'high_quality':
  63. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  64. if item_model in model_names:
  65. item['embedding_available'] = True
  66. else:
  67. item['embedding_available'] = False
  68. else:
  69. item['embedding_available'] = True
  70. response = {
  71. 'data': data,
  72. 'has_more': len(datasets) == limit,
  73. 'limit': limit,
  74. 'total': total,
  75. 'page': page
  76. }
  77. return response, 200
  78. @setup_required
  79. @login_required
  80. @account_initialization_required
  81. def post(self):
  82. parser = reqparse.RequestParser()
  83. parser.add_argument('name', nullable=False, required=True,
  84. help='type is required. Name must be between 1 to 40 characters.',
  85. type=_validate_name)
  86. parser.add_argument('indexing_technique', type=str, location='json',
  87. choices=('high_quality', 'economy'),
  88. help='Invalid indexing technique.')
  89. args = parser.parse_args()
  90. # The role of the current user in the ta table must be admin or owner
  91. if current_user.current_tenant.current_role not in ['admin', 'owner']:
  92. raise Forbidden()
  93. try:
  94. dataset = DatasetService.create_empty_dataset(
  95. tenant_id=current_user.current_tenant_id,
  96. name=args['name'],
  97. indexing_technique=args['indexing_technique'],
  98. account=current_user
  99. )
  100. except services.errors.dataset.DatasetNameDuplicateError:
  101. raise DatasetNameDuplicateError()
  102. return marshal(dataset, dataset_detail_fields), 201
  103. class DatasetApi(Resource):
  104. @setup_required
  105. @login_required
  106. @account_initialization_required
  107. def get(self, dataset_id):
  108. dataset_id_str = str(dataset_id)
  109. dataset = DatasetService.get_dataset(dataset_id_str)
  110. if dataset is None:
  111. raise NotFound("Dataset not found.")
  112. try:
  113. DatasetService.check_dataset_permission(
  114. dataset, current_user)
  115. except services.errors.account.NoPermissionError as e:
  116. raise Forbidden(str(e))
  117. data = marshal(dataset, dataset_detail_fields)
  118. # check embedding setting
  119. provider_manager = ProviderManager()
  120. configurations = provider_manager.get_configurations(
  121. tenant_id=current_user.current_tenant_id
  122. )
  123. embedding_models = configurations.get_models(
  124. model_type=ModelType.TEXT_EMBEDDING,
  125. only_active=True
  126. )
  127. model_names = []
  128. for embedding_model in embedding_models:
  129. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  130. if data['indexing_technique'] == 'high_quality':
  131. item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
  132. if item_model in model_names:
  133. data['embedding_available'] = True
  134. else:
  135. data['embedding_available'] = False
  136. else:
  137. data['embedding_available'] = True
  138. return data, 200
  139. @setup_required
  140. @login_required
  141. @account_initialization_required
  142. def patch(self, dataset_id):
  143. dataset_id_str = str(dataset_id)
  144. dataset = DatasetService.get_dataset(dataset_id_str)
  145. if dataset is None:
  146. raise NotFound("Dataset not found.")
  147. # check user's model setting
  148. DatasetService.check_dataset_model_setting(dataset)
  149. parser = reqparse.RequestParser()
  150. parser.add_argument('name', nullable=False,
  151. help='type is required. Name must be between 1 to 40 characters.',
  152. type=_validate_name)
  153. parser.add_argument('description',
  154. location='json', store_missing=False,
  155. type=_validate_description_length)
  156. parser.add_argument('indexing_technique', type=str, location='json',
  157. choices=('high_quality', 'economy'),
  158. help='Invalid indexing technique.')
  159. parser.add_argument('permission', type=str, location='json', choices=(
  160. 'only_me', 'all_team_members'), help='Invalid permission.')
  161. parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
  162. args = parser.parse_args()
  163. # The role of the current user in the ta table must be admin or owner
  164. if current_user.current_tenant.current_role not in ['admin', 'owner']:
  165. raise Forbidden()
  166. dataset = DatasetService.update_dataset(
  167. dataset_id_str, args, current_user)
  168. if dataset is None:
  169. raise NotFound("Dataset not found.")
  170. return marshal(dataset, dataset_detail_fields), 200
  171. @setup_required
  172. @login_required
  173. @account_initialization_required
  174. def delete(self, dataset_id):
  175. dataset_id_str = str(dataset_id)
  176. # The role of the current user in the ta table must be admin or owner
  177. if current_user.current_tenant.current_role not in ['admin', 'owner']:
  178. raise Forbidden()
  179. if DatasetService.delete_dataset(dataset_id_str, current_user):
  180. return {'result': 'success'}, 204
  181. else:
  182. raise NotFound("Dataset not found.")
  183. class DatasetQueryApi(Resource):
  184. @setup_required
  185. @login_required
  186. @account_initialization_required
  187. def get(self, dataset_id):
  188. dataset_id_str = str(dataset_id)
  189. dataset = DatasetService.get_dataset(dataset_id_str)
  190. if dataset is None:
  191. raise NotFound("Dataset not found.")
  192. try:
  193. DatasetService.check_dataset_permission(dataset, current_user)
  194. except services.errors.account.NoPermissionError as e:
  195. raise Forbidden(str(e))
  196. page = request.args.get('page', default=1, type=int)
  197. limit = request.args.get('limit', default=20, type=int)
  198. dataset_queries, total = DatasetService.get_dataset_queries(
  199. dataset_id=dataset.id,
  200. page=page,
  201. per_page=limit
  202. )
  203. response = {
  204. 'data': marshal(dataset_queries, dataset_query_detail_fields),
  205. 'has_more': len(dataset_queries) == limit,
  206. 'limit': limit,
  207. 'total': total,
  208. 'page': page
  209. }
  210. return response, 200
  211. class DatasetIndexingEstimateApi(Resource):
  212. @setup_required
  213. @login_required
  214. @account_initialization_required
  215. def post(self):
  216. parser = reqparse.RequestParser()
  217. parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
  218. parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
  219. parser.add_argument('indexing_technique', type=str, required=True, nullable=True, location='json')
  220. parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
  221. parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
  222. parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
  223. location='json')
  224. args = parser.parse_args()
  225. # validate args
  226. DocumentService.estimate_args_validate(args)
  227. if args['info_list']['data_source_type'] == 'upload_file':
  228. file_ids = args['info_list']['file_info_list']['file_ids']
  229. file_details = db.session.query(UploadFile).filter(
  230. UploadFile.tenant_id == current_user.current_tenant_id,
  231. UploadFile.id.in_(file_ids)
  232. ).all()
  233. if file_details is None:
  234. raise NotFound("File not found.")
  235. indexing_runner = IndexingRunner()
  236. try:
  237. response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
  238. args['process_rule'], args['doc_form'],
  239. args['doc_language'], args['dataset_id'],
  240. args['indexing_technique'])
  241. except LLMBadRequestError:
  242. raise ProviderNotInitializeError(
  243. f"No Embedding Model available. Please configure a valid provider "
  244. f"in the Settings -> Model Provider.")
  245. except ProviderTokenNotInitError as ex:
  246. raise ProviderNotInitializeError(ex.description)
  247. elif args['info_list']['data_source_type'] == 'notion_import':
  248. indexing_runner = IndexingRunner()
  249. try:
  250. response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
  251. args['info_list']['notion_info_list'],
  252. args['process_rule'], args['doc_form'],
  253. args['doc_language'], args['dataset_id'],
  254. args['indexing_technique'])
  255. except LLMBadRequestError:
  256. raise ProviderNotInitializeError(
  257. f"No Embedding Model available. Please configure a valid provider "
  258. f"in the Settings -> Model Provider.")
  259. except ProviderTokenNotInitError as ex:
  260. raise ProviderNotInitializeError(ex.description)
  261. else:
  262. raise ValueError('Data source type not support')
  263. return response, 200
  264. class DatasetRelatedAppListApi(Resource):
  265. @setup_required
  266. @login_required
  267. @account_initialization_required
  268. @marshal_with(related_app_list)
  269. def get(self, dataset_id):
  270. dataset_id_str = str(dataset_id)
  271. dataset = DatasetService.get_dataset(dataset_id_str)
  272. if dataset is None:
  273. raise NotFound("Dataset not found.")
  274. try:
  275. DatasetService.check_dataset_permission(dataset, current_user)
  276. except services.errors.account.NoPermissionError as e:
  277. raise Forbidden(str(e))
  278. app_dataset_joins = DatasetService.get_related_apps(dataset.id)
  279. related_apps = []
  280. for app_dataset_join in app_dataset_joins:
  281. app_model = app_dataset_join.app
  282. if app_model:
  283. related_apps.append(app_model)
  284. return {
  285. 'data': related_apps,
  286. 'total': len(related_apps)
  287. }, 200
  288. class DatasetIndexingStatusApi(Resource):
  289. @setup_required
  290. @login_required
  291. @account_initialization_required
  292. def get(self, dataset_id):
  293. dataset_id = str(dataset_id)
  294. documents = db.session.query(Document).filter(
  295. Document.dataset_id == dataset_id,
  296. Document.tenant_id == current_user.current_tenant_id
  297. ).all()
  298. documents_status = []
  299. for document in documents:
  300. completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
  301. DocumentSegment.document_id == str(document.id),
  302. DocumentSegment.status != 're_segment').count()
  303. total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
  304. DocumentSegment.status != 're_segment').count()
  305. document.completed_segments = completed_segments
  306. document.total_segments = total_segments
  307. documents_status.append(marshal(document, document_status_fields))
  308. data = {
  309. 'data': documents_status
  310. }
  311. return data
  312. class DatasetApiKeyApi(Resource):
  313. max_keys = 10
  314. token_prefix = 'dataset-'
  315. resource_type = 'dataset'
  316. @setup_required
  317. @login_required
  318. @account_initialization_required
  319. @marshal_with(api_key_list)
  320. def get(self):
  321. keys = db.session.query(ApiToken). \
  322. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  323. all()
  324. return {"items": keys}
  325. @setup_required
  326. @login_required
  327. @account_initialization_required
  328. @marshal_with(api_key_fields)
  329. def post(self):
  330. # The role of the current user in the ta table must be admin or owner
  331. if current_user.current_tenant.current_role not in ['admin', 'owner']:
  332. raise Forbidden()
  333. current_key_count = db.session.query(ApiToken). \
  334. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  335. count()
  336. if current_key_count >= self.max_keys:
  337. flask_restful.abort(
  338. 400,
  339. message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
  340. code='max_keys_exceeded'
  341. )
  342. key = ApiToken.generate_api_key(self.token_prefix, 24)
  343. api_token = ApiToken()
  344. api_token.tenant_id = current_user.current_tenant_id
  345. api_token.token = key
  346. api_token.type = self.resource_type
  347. db.session.add(api_token)
  348. db.session.commit()
  349. return api_token, 200
  350. class DatasetApiDeleteApi(Resource):
  351. resource_type = 'dataset'
  352. @setup_required
  353. @login_required
  354. @account_initialization_required
  355. def delete(self, api_key_id):
  356. api_key_id = str(api_key_id)
  357. # The role of the current user in the ta table must be admin or owner
  358. if current_user.current_tenant.current_role not in ['admin', 'owner']:
  359. raise Forbidden()
  360. key = db.session.query(ApiToken). \
  361. filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,
  362. ApiToken.id == api_key_id). \
  363. first()
  364. if key is None:
  365. flask_restful.abort(404, message='API key not found')
  366. db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
  367. db.session.commit()
  368. return {'result': 'success'}, 204
  369. class DatasetApiBaseUrlApi(Resource):
  370. @setup_required
  371. @login_required
  372. @account_initialization_required
  373. def get(self):
  374. return {
  375. 'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
  376. else request.host_url.rstrip('/')) + '/v1'
  377. }
  378. class DatasetRetrievalSettingApi(Resource):
  379. @setup_required
  380. @login_required
  381. @account_initialization_required
  382. def get(self):
  383. vector_type = current_app.config['VECTOR_STORE']
  384. if vector_type == 'milvus':
  385. return {
  386. 'retrieval_method': [
  387. 'semantic_search'
  388. ]
  389. }
  390. elif vector_type == 'qdrant' or vector_type == 'weaviate':
  391. return {
  392. 'retrieval_method': [
  393. 'semantic_search', 'full_text_search', 'hybrid_search'
  394. ]
  395. }
  396. else:
  397. raise ValueError("Unsupported vector db type.")
  398. class DatasetRetrievalSettingMockApi(Resource):
  399. @setup_required
  400. @login_required
  401. @account_initialization_required
  402. def get(self, vector_type):
  403. if vector_type == 'milvus':
  404. return {
  405. 'retrieval_method': [
  406. 'semantic_search'
  407. ]
  408. }
  409. elif vector_type == 'qdrant' or vector_type == 'weaviate':
  410. return {
  411. 'retrieval_method': [
  412. 'semantic_search', 'full_text_search', 'hybrid_search'
  413. ]
  414. }
  415. else:
  416. raise ValueError("Unsupported vector db type.")
  417. api.add_resource(DatasetListApi, '/datasets')
  418. api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
  419. api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')
  420. api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')
  421. api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')
  422. api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')
  423. api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')
  424. api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
  425. api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')
  426. api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')
  427. api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')