sync_website_document_indexing_task.py 3.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990
  1. import datetime
  2. import logging
  3. import time
  4. import click
  5. from celery import shared_task
  6. from core.indexing_runner import IndexingRunner
  7. from core.rag.index_processor.index_processor_factory import IndexProcessorFactory
  8. from extensions.ext_database import db
  9. from extensions.ext_redis import redis_client
  10. from models.dataset import Dataset, Document, DocumentSegment
  11. from services.feature_service import FeatureService
  12. @shared_task(queue='dataset')
  13. def sync_website_document_indexing_task(dataset_id: str, document_id: str):
  14. """
  15. Async process document
  16. :param dataset_id:
  17. :param document_id:
  18. Usage: sunc_website_document_indexing_task.delay(dataset_id, document_id)
  19. """
  20. start_at = time.perf_counter()
  21. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  22. sync_indexing_cache_key = 'document_{}_is_sync'.format(document_id)
  23. # check document limit
  24. features = FeatureService.get_features(dataset.tenant_id)
  25. try:
  26. if features.billing.enabled:
  27. vector_space = features.vector_space
  28. if 0 < vector_space.limit <= vector_space.size:
  29. raise ValueError("Your total number of documents plus the number of uploads have over the limit of "
  30. "your subscription.")
  31. except Exception as e:
  32. document = db.session.query(Document).filter(
  33. Document.id == document_id,
  34. Document.dataset_id == dataset_id
  35. ).first()
  36. if document:
  37. document.indexing_status = 'error'
  38. document.error = str(e)
  39. document.stopped_at = datetime.datetime.utcnow()
  40. db.session.add(document)
  41. db.session.commit()
  42. redis_client.delete(sync_indexing_cache_key)
  43. return
  44. logging.info(click.style('Start sync website document: {}'.format(document_id), fg='green'))
  45. document = db.session.query(Document).filter(
  46. Document.id == document_id,
  47. Document.dataset_id == dataset_id
  48. ).first()
  49. try:
  50. if document:
  51. # clean old data
  52. index_processor = IndexProcessorFactory(document.doc_form).init_index_processor()
  53. segments = db.session.query(DocumentSegment).filter(DocumentSegment.document_id == document_id).all()
  54. if segments:
  55. index_node_ids = [segment.index_node_id for segment in segments]
  56. # delete from vector index
  57. index_processor.clean(dataset, index_node_ids)
  58. for segment in segments:
  59. db.session.delete(segment)
  60. db.session.commit()
  61. document.indexing_status = 'parsing'
  62. document.processing_started_at = datetime.datetime.utcnow()
  63. db.session.add(document)
  64. db.session.commit()
  65. indexing_runner = IndexingRunner()
  66. indexing_runner.run([document])
  67. redis_client.delete(sync_indexing_cache_key)
  68. except Exception as ex:
  69. document.indexing_status = 'error'
  70. document.error = str(ex)
  71. document.stopped_at = datetime.datetime.utcnow()
  72. db.session.add(document)
  73. db.session.commit()
  74. logging.info(click.style(str(ex), fg='yellow'))
  75. redis_client.delete(sync_indexing_cache_key)
  76. pass
  77. end_at = time.perf_counter()
  78. logging.info(click.style('Sync document: {} latency: {}'.format(document_id, end_at - start_at), fg='green'))