completion.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287
  1. import json
  2. import logging
  3. from typing import Optional, List, Union
  4. from requests.exceptions import ChunkedEncodingError
  5. from core.agent.agent_executor import AgentExecuteResult, PlanningStrategy
  6. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  7. from core.callback_handler.llm_callback_handler import LLMCallbackHandler
  8. from core.conversation_message_task import ConversationMessageTask, ConversationTaskStoppedException
  9. from core.model_providers.error import LLMBadRequestError
  10. from core.memory.read_only_conversation_token_db_buffer_shared_memory import \
  11. ReadOnlyConversationTokenDBBufferSharedMemory
  12. from core.model_providers.model_factory import ModelFactory
  13. from core.model_providers.models.entity.message import PromptMessage
  14. from core.model_providers.models.llm.base import BaseLLM
  15. from core.orchestrator_rule_parser import OrchestratorRuleParser
  16. from core.prompt.prompt_builder import PromptBuilder
  17. from core.prompt.prompts import MORE_LIKE_THIS_GENERATE_PROMPT
  18. from models.dataset import DocumentSegment, Dataset, Document
  19. from models.model import App, AppModelConfig, Account, Conversation, Message, EndUser
  20. class Completion:
  21. @classmethod
  22. def generate(cls, task_id: str, app: App, app_model_config: AppModelConfig, query: str, inputs: dict,
  23. user: Union[Account, EndUser], conversation: Optional[Conversation], streaming: bool,
  24. is_override: bool = False, retriever_from: str = 'dev'):
  25. """
  26. errors: ProviderTokenNotInitError
  27. """
  28. query = PromptBuilder.process_template(query)
  29. memory = None
  30. if conversation:
  31. # get memory of conversation (read-only)
  32. memory = cls.get_memory_from_conversation(
  33. tenant_id=app.tenant_id,
  34. app_model_config=app_model_config,
  35. conversation=conversation,
  36. return_messages=False
  37. )
  38. inputs = conversation.inputs
  39. final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  40. tenant_id=app.tenant_id,
  41. model_config=app_model_config.model_dict,
  42. streaming=streaming
  43. )
  44. conversation_message_task = ConversationMessageTask(
  45. task_id=task_id,
  46. app=app,
  47. app_model_config=app_model_config,
  48. user=user,
  49. conversation=conversation,
  50. is_override=is_override,
  51. inputs=inputs,
  52. query=query,
  53. streaming=streaming,
  54. model_instance=final_model_instance
  55. )
  56. rest_tokens_for_context_and_memory = cls.get_validate_rest_tokens(
  57. mode=app.mode,
  58. model_instance=final_model_instance,
  59. app_model_config=app_model_config,
  60. query=query,
  61. inputs=inputs
  62. )
  63. # init orchestrator rule parser
  64. orchestrator_rule_parser = OrchestratorRuleParser(
  65. tenant_id=app.tenant_id,
  66. app_model_config=app_model_config
  67. )
  68. # parse sensitive_word_avoidance_chain
  69. chain_callback = MainChainGatherCallbackHandler(conversation_message_task)
  70. sensitive_word_avoidance_chain = orchestrator_rule_parser.to_sensitive_word_avoidance_chain(final_model_instance, [chain_callback])
  71. if sensitive_word_avoidance_chain:
  72. query = sensitive_word_avoidance_chain.run(query)
  73. # get agent executor
  74. agent_executor = orchestrator_rule_parser.to_agent_executor(
  75. conversation_message_task=conversation_message_task,
  76. memory=memory,
  77. rest_tokens=rest_tokens_for_context_and_memory,
  78. chain_callback=chain_callback
  79. )
  80. # run agent executor
  81. agent_execute_result = None
  82. if agent_executor:
  83. should_use_agent = agent_executor.should_use_agent(query)
  84. if should_use_agent:
  85. agent_execute_result = agent_executor.run(query)
  86. # run the final llm
  87. try:
  88. cls.run_final_llm(
  89. model_instance=final_model_instance,
  90. mode=app.mode,
  91. app_model_config=app_model_config,
  92. query=query,
  93. inputs=inputs,
  94. agent_execute_result=agent_execute_result,
  95. conversation_message_task=conversation_message_task,
  96. memory=memory
  97. )
  98. except ConversationTaskStoppedException:
  99. return
  100. except ChunkedEncodingError as e:
  101. # Interrupt by LLM (like OpenAI), handle it.
  102. logging.warning(f'ChunkedEncodingError: {e}')
  103. conversation_message_task.end()
  104. return
  105. @classmethod
  106. def run_final_llm(cls, model_instance: BaseLLM, mode: str, app_model_config: AppModelConfig, query: str,
  107. inputs: dict,
  108. agent_execute_result: Optional[AgentExecuteResult],
  109. conversation_message_task: ConversationMessageTask,
  110. memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]):
  111. # When no extra pre prompt is specified,
  112. # the output of the agent can be used directly as the main output content without calling LLM again
  113. fake_response = None
  114. if not app_model_config.pre_prompt and agent_execute_result and agent_execute_result.output \
  115. and agent_execute_result.strategy not in [PlanningStrategy.ROUTER, PlanningStrategy.REACT_ROUTER]:
  116. fake_response = agent_execute_result.output
  117. # get llm prompt
  118. prompt_messages, stop_words = model_instance.get_prompt(
  119. mode=mode,
  120. pre_prompt=app_model_config.pre_prompt,
  121. inputs=inputs,
  122. query=query,
  123. context=agent_execute_result.output if agent_execute_result else None,
  124. memory=memory
  125. )
  126. cls.recale_llm_max_tokens(
  127. model_instance=model_instance,
  128. prompt_messages=prompt_messages,
  129. )
  130. response = model_instance.run(
  131. messages=prompt_messages,
  132. stop=stop_words,
  133. callbacks=[LLMCallbackHandler(model_instance, conversation_message_task)],
  134. fake_response=fake_response
  135. )
  136. return response
  137. @classmethod
  138. def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
  139. max_token_limit: int) -> str:
  140. """Get memory messages."""
  141. memory.max_token_limit = max_token_limit
  142. memory_key = memory.memory_variables[0]
  143. external_context = memory.load_memory_variables({})
  144. return external_context[memory_key]
  145. @classmethod
  146. def get_memory_from_conversation(cls, tenant_id: str, app_model_config: AppModelConfig,
  147. conversation: Conversation,
  148. **kwargs) -> ReadOnlyConversationTokenDBBufferSharedMemory:
  149. # only for calc token in memory
  150. memory_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  151. tenant_id=tenant_id,
  152. model_config=app_model_config.model_dict
  153. )
  154. # use llm config from conversation
  155. memory = ReadOnlyConversationTokenDBBufferSharedMemory(
  156. conversation=conversation,
  157. model_instance=memory_model_instance,
  158. max_token_limit=kwargs.get("max_token_limit", 2048),
  159. memory_key=kwargs.get("memory_key", "chat_history"),
  160. return_messages=kwargs.get("return_messages", True),
  161. input_key=kwargs.get("input_key", "input"),
  162. output_key=kwargs.get("output_key", "output"),
  163. message_limit=kwargs.get("message_limit", 10),
  164. )
  165. return memory
  166. @classmethod
  167. def get_validate_rest_tokens(cls, mode: str, model_instance: BaseLLM, app_model_config: AppModelConfig,
  168. query: str, inputs: dict) -> int:
  169. model_limited_tokens = model_instance.model_rules.max_tokens.max
  170. max_tokens = model_instance.get_model_kwargs().max_tokens
  171. if model_limited_tokens is None:
  172. return -1
  173. if max_tokens is None:
  174. max_tokens = 0
  175. # get prompt without memory and context
  176. prompt_messages, _ = model_instance.get_prompt(
  177. mode=mode,
  178. pre_prompt=app_model_config.pre_prompt,
  179. inputs=inputs,
  180. query=query,
  181. context=None,
  182. memory=None
  183. )
  184. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  185. rest_tokens = model_limited_tokens - max_tokens - prompt_tokens
  186. if rest_tokens < 0:
  187. raise LLMBadRequestError("Query or prefix prompt is too long, you can reduce the prefix prompt, "
  188. "or shrink the max token, or switch to a llm with a larger token limit size.")
  189. return rest_tokens
  190. @classmethod
  191. def recale_llm_max_tokens(cls, model_instance: BaseLLM, prompt_messages: List[PromptMessage]):
  192. # recalc max_tokens if sum(prompt_token + max_tokens) over model token limit
  193. model_limited_tokens = model_instance.model_rules.max_tokens.max
  194. max_tokens = model_instance.get_model_kwargs().max_tokens
  195. if model_limited_tokens is None:
  196. return
  197. if max_tokens is None:
  198. max_tokens = 0
  199. prompt_tokens = model_instance.get_num_tokens(prompt_messages)
  200. if prompt_tokens + max_tokens > model_limited_tokens:
  201. max_tokens = max(model_limited_tokens - prompt_tokens, 16)
  202. # update model instance max tokens
  203. model_kwargs = model_instance.get_model_kwargs()
  204. model_kwargs.max_tokens = max_tokens
  205. model_instance.set_model_kwargs(model_kwargs)
  206. @classmethod
  207. def generate_more_like_this(cls, task_id: str, app: App, message: Message, pre_prompt: str,
  208. app_model_config: AppModelConfig, user: Account, streaming: bool):
  209. final_model_instance = ModelFactory.get_text_generation_model_from_model_config(
  210. tenant_id=app.tenant_id,
  211. model_config=app_model_config.model_dict,
  212. streaming=streaming
  213. )
  214. # get llm prompt
  215. old_prompt_messages, _ = final_model_instance.get_prompt(
  216. mode='completion',
  217. pre_prompt=pre_prompt,
  218. inputs=message.inputs,
  219. query=message.query,
  220. context=None,
  221. memory=None
  222. )
  223. original_completion = message.answer.strip()
  224. prompt = MORE_LIKE_THIS_GENERATE_PROMPT
  225. prompt = prompt.format(prompt=old_prompt_messages[0].content, original_completion=original_completion)
  226. prompt_messages = [PromptMessage(content=prompt)]
  227. conversation_message_task = ConversationMessageTask(
  228. task_id=task_id,
  229. app=app,
  230. app_model_config=app_model_config,
  231. user=user,
  232. inputs=message.inputs,
  233. query=message.query,
  234. is_override=True if message.override_model_configs else False,
  235. streaming=streaming,
  236. model_instance=final_model_instance
  237. )
  238. cls.recale_llm_max_tokens(
  239. model_instance=final_model_instance,
  240. prompt_messages=prompt_messages
  241. )
  242. final_model_instance.run(
  243. messages=prompt_messages,
  244. callbacks=[LLMCallbackHandler(final_model_instance, conversation_message_task)]
  245. )