indexing_runner.py 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727
  1. import datetime
  2. import json
  3. import logging
  4. import re
  5. import threading
  6. import time
  7. import uuid
  8. from typing import Optional, List, cast
  9. from flask import current_app, Flask
  10. from flask_login import current_user
  11. from langchain.schema import Document
  12. from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
  13. from core.data_loader.file_extractor import FileExtractor
  14. from core.data_loader.loader.notion import NotionLoader
  15. from core.docstore.dataset_docstore import DatesetDocumentStore
  16. from core.generator.llm_generator import LLMGenerator
  17. from core.index.index import IndexBuilder
  18. from core.model_providers.error import ProviderTokenNotInitError
  19. from core.model_providers.model_factory import ModelFactory
  20. from core.model_providers.models.entity.message import MessageType
  21. from core.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
  22. from extensions.ext_database import db
  23. from extensions.ext_redis import redis_client
  24. from extensions.ext_storage import storage
  25. from libs import helper
  26. from models.dataset import Document as DatasetDocument
  27. from models.dataset import Dataset, DocumentSegment, DatasetProcessRule
  28. from models.model import UploadFile
  29. from models.source import DataSourceBinding
  30. class IndexingRunner:
  31. def __init__(self):
  32. self.storage = storage
  33. def run(self, dataset_documents: List[DatasetDocument]):
  34. """Run the indexing process."""
  35. for dataset_document in dataset_documents:
  36. try:
  37. # get dataset
  38. dataset = Dataset.query.filter_by(
  39. id=dataset_document.dataset_id
  40. ).first()
  41. if not dataset:
  42. raise ValueError("no dataset found")
  43. # load file
  44. text_docs = self._load_data(dataset_document)
  45. # get the process rule
  46. processing_rule = db.session.query(DatasetProcessRule). \
  47. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  48. first()
  49. # get splitter
  50. splitter = self._get_splitter(processing_rule)
  51. # split to documents
  52. documents = self._step_split(
  53. text_docs=text_docs,
  54. splitter=splitter,
  55. dataset=dataset,
  56. dataset_document=dataset_document,
  57. processing_rule=processing_rule
  58. )
  59. # new_documents = []
  60. # for document in documents:
  61. # response = LLMGenerator.generate_qa_document(dataset.tenant_id, document.page_content)
  62. # document_qa_list = self.format_split_text(response)
  63. # for result in document_qa_list:
  64. # document = Document(page_content=result['question'], metadata={'source': result['answer']})
  65. # new_documents.append(document)
  66. # build index
  67. self._build_index(
  68. dataset=dataset,
  69. dataset_document=dataset_document,
  70. documents=documents
  71. )
  72. except DocumentIsPausedException:
  73. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  74. except ProviderTokenNotInitError as e:
  75. dataset_document.indexing_status = 'error'
  76. dataset_document.error = str(e.description)
  77. dataset_document.stopped_at = datetime.datetime.utcnow()
  78. db.session.commit()
  79. except Exception as e:
  80. logging.exception("consume document failed")
  81. dataset_document.indexing_status = 'error'
  82. dataset_document.error = str(e)
  83. dataset_document.stopped_at = datetime.datetime.utcnow()
  84. db.session.commit()
  85. def format_split_text(self, text):
  86. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)"
  87. matches = re.findall(regex, text, re.MULTILINE)
  88. result = []
  89. for match in matches:
  90. q = match[0]
  91. a = match[1]
  92. if q and a:
  93. result.append({
  94. "question": q,
  95. "answer": re.sub(r"\n\s*", "\n", a.strip())
  96. })
  97. return result
  98. def run_in_splitting_status(self, dataset_document: DatasetDocument):
  99. """Run the indexing process when the index_status is splitting."""
  100. try:
  101. # get dataset
  102. dataset = Dataset.query.filter_by(
  103. id=dataset_document.dataset_id
  104. ).first()
  105. if not dataset:
  106. raise ValueError("no dataset found")
  107. # get exist document_segment list and delete
  108. document_segments = DocumentSegment.query.filter_by(
  109. dataset_id=dataset.id,
  110. document_id=dataset_document.id
  111. ).all()
  112. db.session.delete(document_segments)
  113. db.session.commit()
  114. # load file
  115. text_docs = self._load_data(dataset_document)
  116. # get the process rule
  117. processing_rule = db.session.query(DatasetProcessRule). \
  118. filter(DatasetProcessRule.id == dataset_document.dataset_process_rule_id). \
  119. first()
  120. # get splitter
  121. splitter = self._get_splitter(processing_rule)
  122. # split to documents
  123. documents = self._step_split(
  124. text_docs=text_docs,
  125. splitter=splitter,
  126. dataset=dataset,
  127. dataset_document=dataset_document,
  128. processing_rule=processing_rule
  129. )
  130. # build index
  131. self._build_index(
  132. dataset=dataset,
  133. dataset_document=dataset_document,
  134. documents=documents
  135. )
  136. except DocumentIsPausedException:
  137. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  138. except ProviderTokenNotInitError as e:
  139. dataset_document.indexing_status = 'error'
  140. dataset_document.error = str(e.description)
  141. dataset_document.stopped_at = datetime.datetime.utcnow()
  142. db.session.commit()
  143. except Exception as e:
  144. logging.exception("consume document failed")
  145. dataset_document.indexing_status = 'error'
  146. dataset_document.error = str(e)
  147. dataset_document.stopped_at = datetime.datetime.utcnow()
  148. db.session.commit()
  149. def run_in_indexing_status(self, dataset_document: DatasetDocument):
  150. """Run the indexing process when the index_status is indexing."""
  151. try:
  152. # get dataset
  153. dataset = Dataset.query.filter_by(
  154. id=dataset_document.dataset_id
  155. ).first()
  156. if not dataset:
  157. raise ValueError("no dataset found")
  158. # get exist document_segment list and delete
  159. document_segments = DocumentSegment.query.filter_by(
  160. dataset_id=dataset.id,
  161. document_id=dataset_document.id
  162. ).all()
  163. documents = []
  164. if document_segments:
  165. for document_segment in document_segments:
  166. # transform segment to node
  167. if document_segment.status != "completed":
  168. document = Document(
  169. page_content=document_segment.content,
  170. metadata={
  171. "doc_id": document_segment.index_node_id,
  172. "doc_hash": document_segment.index_node_hash,
  173. "document_id": document_segment.document_id,
  174. "dataset_id": document_segment.dataset_id,
  175. }
  176. )
  177. documents.append(document)
  178. # build index
  179. self._build_index(
  180. dataset=dataset,
  181. dataset_document=dataset_document,
  182. documents=documents
  183. )
  184. except DocumentIsPausedException:
  185. raise DocumentIsPausedException('Document paused, document id: {}'.format(dataset_document.id))
  186. except ProviderTokenNotInitError as e:
  187. dataset_document.indexing_status = 'error'
  188. dataset_document.error = str(e.description)
  189. dataset_document.stopped_at = datetime.datetime.utcnow()
  190. db.session.commit()
  191. except Exception as e:
  192. logging.exception("consume document failed")
  193. dataset_document.indexing_status = 'error'
  194. dataset_document.error = str(e)
  195. dataset_document.stopped_at = datetime.datetime.utcnow()
  196. db.session.commit()
  197. def file_indexing_estimate(self, tenant_id: str, file_details: List[UploadFile], tmp_processing_rule: dict,
  198. doc_form: str = None) -> dict:
  199. """
  200. Estimate the indexing for the document.
  201. """
  202. embedding_model = ModelFactory.get_embedding_model(
  203. tenant_id=tenant_id
  204. )
  205. tokens = 0
  206. preview_texts = []
  207. total_segments = 0
  208. for file_detail in file_details:
  209. # load data from file
  210. text_docs = FileExtractor.load(file_detail)
  211. processing_rule = DatasetProcessRule(
  212. mode=tmp_processing_rule["mode"],
  213. rules=json.dumps(tmp_processing_rule["rules"])
  214. )
  215. # get splitter
  216. splitter = self._get_splitter(processing_rule)
  217. # split to documents
  218. documents = self._split_to_documents_for_estimate(
  219. text_docs=text_docs,
  220. splitter=splitter,
  221. processing_rule=processing_rule
  222. )
  223. total_segments += len(documents)
  224. for document in documents:
  225. if len(preview_texts) < 5:
  226. preview_texts.append(document.page_content)
  227. tokens += embedding_model.get_num_tokens(self.filter_string(document.page_content))
  228. text_generation_model = ModelFactory.get_text_generation_model(
  229. tenant_id=tenant_id
  230. )
  231. if doc_form and doc_form == 'qa_model':
  232. if len(preview_texts) > 0:
  233. # qa model document
  234. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0])
  235. document_qa_list = self.format_split_text(response)
  236. return {
  237. "total_segments": total_segments * 20,
  238. "tokens": total_segments * 2000,
  239. "total_price": '{:f}'.format(
  240. text_generation_model.get_token_price(total_segments * 2000, MessageType.HUMAN)),
  241. "currency": embedding_model.get_currency(),
  242. "qa_preview": document_qa_list,
  243. "preview": preview_texts
  244. }
  245. return {
  246. "total_segments": total_segments,
  247. "tokens": tokens,
  248. "total_price": '{:f}'.format(embedding_model.get_token_price(tokens)),
  249. "currency": embedding_model.get_currency(),
  250. "preview": preview_texts
  251. }
  252. def notion_indexing_estimate(self, tenant_id: str, notion_info_list: list, tmp_processing_rule: dict, doc_form: str = None) -> dict:
  253. """
  254. Estimate the indexing for the document.
  255. """
  256. embedding_model = ModelFactory.get_embedding_model(
  257. tenant_id=tenant_id
  258. )
  259. # load data from notion
  260. tokens = 0
  261. preview_texts = []
  262. total_segments = 0
  263. for notion_info in notion_info_list:
  264. workspace_id = notion_info['workspace_id']
  265. data_source_binding = DataSourceBinding.query.filter(
  266. db.and_(
  267. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  268. DataSourceBinding.provider == 'notion',
  269. DataSourceBinding.disabled == False,
  270. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  271. )
  272. ).first()
  273. if not data_source_binding:
  274. raise ValueError('Data source binding not found.')
  275. for page in notion_info['pages']:
  276. loader = NotionLoader(
  277. notion_access_token=data_source_binding.access_token,
  278. notion_workspace_id=workspace_id,
  279. notion_obj_id=page['page_id'],
  280. notion_page_type=page['type']
  281. )
  282. documents = loader.load()
  283. processing_rule = DatasetProcessRule(
  284. mode=tmp_processing_rule["mode"],
  285. rules=json.dumps(tmp_processing_rule["rules"])
  286. )
  287. # get splitter
  288. splitter = self._get_splitter(processing_rule)
  289. # split to documents
  290. documents = self._split_to_documents_for_estimate(
  291. text_docs=documents,
  292. splitter=splitter,
  293. processing_rule=processing_rule
  294. )
  295. total_segments += len(documents)
  296. for document in documents:
  297. if len(preview_texts) < 5:
  298. preview_texts.append(document.page_content)
  299. tokens += embedding_model.get_num_tokens(document.page_content)
  300. text_generation_model = ModelFactory.get_text_generation_model(
  301. tenant_id=tenant_id
  302. )
  303. if doc_form and doc_form == 'qa_model':
  304. if len(preview_texts) > 0:
  305. # qa model document
  306. response = LLMGenerator.generate_qa_document(current_user.current_tenant_id, preview_texts[0])
  307. document_qa_list = self.format_split_text(response)
  308. return {
  309. "total_segments": total_segments * 20,
  310. "tokens": total_segments * 2000,
  311. "total_price": '{:f}'.format(
  312. text_generation_model.get_token_price(total_segments * 2000, MessageType.HUMAN)),
  313. "currency": embedding_model.get_currency(),
  314. "qa_preview": document_qa_list,
  315. "preview": preview_texts
  316. }
  317. return {
  318. "total_segments": total_segments,
  319. "tokens": tokens,
  320. "total_price": '{:f}'.format(embedding_model.get_token_price(tokens)),
  321. "currency": embedding_model.get_currency(),
  322. "preview": preview_texts
  323. }
  324. def _load_data(self, dataset_document: DatasetDocument) -> List[Document]:
  325. # load file
  326. if dataset_document.data_source_type not in ["upload_file", "notion_import"]:
  327. return []
  328. data_source_info = dataset_document.data_source_info_dict
  329. text_docs = []
  330. if dataset_document.data_source_type == 'upload_file':
  331. if not data_source_info or 'upload_file_id' not in data_source_info:
  332. raise ValueError("no upload file found")
  333. file_detail = db.session.query(UploadFile). \
  334. filter(UploadFile.id == data_source_info['upload_file_id']). \
  335. one_or_none()
  336. text_docs = FileExtractor.load(file_detail)
  337. elif dataset_document.data_source_type == 'notion_import':
  338. loader = NotionLoader.from_document(dataset_document)
  339. text_docs = loader.load()
  340. # update document status to splitting
  341. self._update_document_index_status(
  342. document_id=dataset_document.id,
  343. after_indexing_status="splitting",
  344. extra_update_params={
  345. DatasetDocument.word_count: sum([len(text_doc.page_content) for text_doc in text_docs]),
  346. DatasetDocument.parsing_completed_at: datetime.datetime.utcnow()
  347. }
  348. )
  349. # replace doc id to document model id
  350. text_docs = cast(List[Document], text_docs)
  351. for text_doc in text_docs:
  352. # remove invalid symbol
  353. text_doc.page_content = self.filter_string(text_doc.page_content)
  354. text_doc.metadata['document_id'] = dataset_document.id
  355. text_doc.metadata['dataset_id'] = dataset_document.dataset_id
  356. return text_docs
  357. def filter_string(self, text):
  358. text = re.sub(r'<\|', '<', text)
  359. text = re.sub(r'\|>', '>', text)
  360. text = re.sub(r'[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]', '', text)
  361. return text
  362. def _get_splitter(self, processing_rule: DatasetProcessRule) -> TextSplitter:
  363. """
  364. Get the NodeParser object according to the processing rule.
  365. """
  366. if processing_rule.mode == "custom":
  367. # The user-defined segmentation rule
  368. rules = json.loads(processing_rule.rules)
  369. segmentation = rules["segmentation"]
  370. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  371. raise ValueError("Custom segment length should be between 50 and 1000.")
  372. separator = segmentation["separator"]
  373. if separator:
  374. separator = separator.replace('\\n', '\n')
  375. character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
  376. chunk_size=segmentation["max_tokens"],
  377. chunk_overlap=0,
  378. fixed_separator=separator,
  379. separators=["\n\n", "。", ".", " ", ""]
  380. )
  381. else:
  382. # Automatic segmentation
  383. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  384. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  385. chunk_overlap=0,
  386. separators=["\n\n", "。", ".", " ", ""]
  387. )
  388. return character_splitter
  389. def _step_split(self, text_docs: List[Document], splitter: TextSplitter,
  390. dataset: Dataset, dataset_document: DatasetDocument, processing_rule: DatasetProcessRule) \
  391. -> List[Document]:
  392. """
  393. Split the text documents into documents and save them to the document segment.
  394. """
  395. documents = self._split_to_documents(
  396. text_docs=text_docs,
  397. splitter=splitter,
  398. processing_rule=processing_rule,
  399. tenant_id=dataset.tenant_id,
  400. document_form=dataset_document.doc_form
  401. )
  402. # save node to document segment
  403. doc_store = DatesetDocumentStore(
  404. dataset=dataset,
  405. user_id=dataset_document.created_by,
  406. document_id=dataset_document.id
  407. )
  408. # add document segments
  409. doc_store.add_documents(documents)
  410. # update document status to indexing
  411. cur_time = datetime.datetime.utcnow()
  412. self._update_document_index_status(
  413. document_id=dataset_document.id,
  414. after_indexing_status="indexing",
  415. extra_update_params={
  416. DatasetDocument.cleaning_completed_at: cur_time,
  417. DatasetDocument.splitting_completed_at: cur_time,
  418. }
  419. )
  420. # update segment status to indexing
  421. self._update_segments_by_document(
  422. dataset_document_id=dataset_document.id,
  423. update_params={
  424. DocumentSegment.status: "indexing",
  425. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  426. }
  427. )
  428. return documents
  429. def _split_to_documents(self, text_docs: List[Document], splitter: TextSplitter,
  430. processing_rule: DatasetProcessRule, tenant_id: str, document_form: str) -> List[Document]:
  431. """
  432. Split the text documents into nodes.
  433. """
  434. all_documents = []
  435. all_qa_documents = []
  436. for text_doc in text_docs:
  437. # document clean
  438. document_text = self._document_clean(text_doc.page_content, processing_rule)
  439. text_doc.page_content = document_text
  440. # parse document to nodes
  441. documents = splitter.split_documents([text_doc])
  442. split_documents = []
  443. for document_node in documents:
  444. doc_id = str(uuid.uuid4())
  445. hash = helper.generate_text_hash(document_node.page_content)
  446. document_node.metadata['doc_id'] = doc_id
  447. document_node.metadata['doc_hash'] = hash
  448. split_documents.append(document_node)
  449. all_documents.extend(split_documents)
  450. # processing qa document
  451. if document_form == 'qa_model':
  452. for i in range(0, len(all_documents), 10):
  453. threads = []
  454. sub_documents = all_documents[i:i + 10]
  455. for doc in sub_documents:
  456. document_format_thread = threading.Thread(target=self.format_qa_document, kwargs={
  457. 'flask_app': current_app._get_current_object(), 'tenant_id': tenant_id, 'document_node': doc,
  458. 'all_qa_documents': all_qa_documents})
  459. threads.append(document_format_thread)
  460. document_format_thread.start()
  461. for thread in threads:
  462. thread.join()
  463. return all_qa_documents
  464. return all_documents
  465. def format_qa_document(self, flask_app: Flask, tenant_id: str, document_node, all_qa_documents):
  466. format_documents = []
  467. if document_node.page_content is None or not document_node.page_content.strip():
  468. return
  469. with flask_app.app_context():
  470. try:
  471. # qa model document
  472. response = LLMGenerator.generate_qa_document(tenant_id, document_node.page_content)
  473. document_qa_list = self.format_split_text(response)
  474. qa_documents = []
  475. for result in document_qa_list:
  476. qa_document = Document(page_content=result['question'], metadata=document_node.metadata.copy())
  477. doc_id = str(uuid.uuid4())
  478. hash = helper.generate_text_hash(result['question'])
  479. qa_document.metadata['answer'] = result['answer']
  480. qa_document.metadata['doc_id'] = doc_id
  481. qa_document.metadata['doc_hash'] = hash
  482. qa_documents.append(qa_document)
  483. format_documents.extend(qa_documents)
  484. except Exception as e:
  485. logging.exception(e)
  486. all_qa_documents.extend(format_documents)
  487. def _split_to_documents_for_estimate(self, text_docs: List[Document], splitter: TextSplitter,
  488. processing_rule: DatasetProcessRule) -> List[Document]:
  489. """
  490. Split the text documents into nodes.
  491. """
  492. all_documents = []
  493. for text_doc in text_docs:
  494. # document clean
  495. document_text = self._document_clean(text_doc.page_content, processing_rule)
  496. text_doc.page_content = document_text
  497. # parse document to nodes
  498. documents = splitter.split_documents([text_doc])
  499. split_documents = []
  500. for document in documents:
  501. if document.page_content is None or not document.page_content.strip():
  502. continue
  503. doc_id = str(uuid.uuid4())
  504. hash = helper.generate_text_hash(document.page_content)
  505. document.metadata['doc_id'] = doc_id
  506. document.metadata['doc_hash'] = hash
  507. split_documents.append(document)
  508. all_documents.extend(split_documents)
  509. return all_documents
  510. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  511. """
  512. Clean the document text according to the processing rules.
  513. """
  514. if processing_rule.mode == "automatic":
  515. rules = DatasetProcessRule.AUTOMATIC_RULES
  516. else:
  517. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  518. if 'pre_processing_rules' in rules:
  519. pre_processing_rules = rules["pre_processing_rules"]
  520. for pre_processing_rule in pre_processing_rules:
  521. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  522. # Remove extra spaces
  523. pattern = r'\n{3,}'
  524. text = re.sub(pattern, '\n\n', text)
  525. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  526. text = re.sub(pattern, ' ', text)
  527. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  528. # Remove email
  529. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  530. text = re.sub(pattern, '', text)
  531. # Remove URL
  532. pattern = r'https?://[^\s]+'
  533. text = re.sub(pattern, '', text)
  534. return text
  535. def format_split_text(self, text):
  536. regex = r"Q\d+:\s*(.*?)\s*A\d+:\s*([\s\S]*?)(?=Q|$)" # 匹配Q和A的正则表达式
  537. matches = re.findall(regex, text, re.MULTILINE) # 获取所有匹配到的结果
  538. result = [] # 存储最终的结果
  539. for match in matches:
  540. q = match[0]
  541. a = match[1]
  542. if q and a:
  543. # 如果Q和A都存在,就将其添加到结果中
  544. result.append({
  545. "question": q,
  546. "answer": re.sub(r"\n\s*", "\n", a.strip())
  547. })
  548. return result
  549. def _build_index(self, dataset: Dataset, dataset_document: DatasetDocument, documents: List[Document]) -> None:
  550. """
  551. Build the index for the document.
  552. """
  553. vector_index = IndexBuilder.get_index(dataset, 'high_quality')
  554. keyword_table_index = IndexBuilder.get_index(dataset, 'economy')
  555. embedding_model = ModelFactory.get_embedding_model(
  556. tenant_id=dataset.tenant_id
  557. )
  558. # chunk nodes by chunk size
  559. indexing_start_at = time.perf_counter()
  560. tokens = 0
  561. chunk_size = 100
  562. for i in range(0, len(documents), chunk_size):
  563. # check document is paused
  564. self._check_document_paused_status(dataset_document.id)
  565. chunk_documents = documents[i:i + chunk_size]
  566. tokens += sum(
  567. embedding_model.get_num_tokens(document.page_content)
  568. for document in chunk_documents
  569. )
  570. # save vector index
  571. if vector_index:
  572. vector_index.add_texts(chunk_documents)
  573. # save keyword index
  574. keyword_table_index.add_texts(chunk_documents)
  575. document_ids = [document.metadata['doc_id'] for document in chunk_documents]
  576. db.session.query(DocumentSegment).filter(
  577. DocumentSegment.document_id == dataset_document.id,
  578. DocumentSegment.index_node_id.in_(document_ids),
  579. DocumentSegment.status == "indexing"
  580. ).update({
  581. DocumentSegment.status: "completed",
  582. DocumentSegment.completed_at: datetime.datetime.utcnow()
  583. })
  584. db.session.commit()
  585. indexing_end_at = time.perf_counter()
  586. # update document status to completed
  587. self._update_document_index_status(
  588. document_id=dataset_document.id,
  589. after_indexing_status="completed",
  590. extra_update_params={
  591. DatasetDocument.tokens: tokens,
  592. DatasetDocument.completed_at: datetime.datetime.utcnow(),
  593. DatasetDocument.indexing_latency: indexing_end_at - indexing_start_at,
  594. }
  595. )
  596. def _check_document_paused_status(self, document_id: str):
  597. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  598. result = redis_client.get(indexing_cache_key)
  599. if result:
  600. raise DocumentIsPausedException()
  601. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  602. extra_update_params: Optional[dict] = None) -> None:
  603. """
  604. Update the document indexing status.
  605. """
  606. count = DatasetDocument.query.filter_by(id=document_id, is_paused=True).count()
  607. if count > 0:
  608. raise DocumentIsPausedException()
  609. update_params = {
  610. DatasetDocument.indexing_status: after_indexing_status
  611. }
  612. if extra_update_params:
  613. update_params.update(extra_update_params)
  614. DatasetDocument.query.filter_by(id=document_id).update(update_params)
  615. db.session.commit()
  616. def _update_segments_by_document(self, dataset_document_id: str, update_params: dict) -> None:
  617. """
  618. Update the document segment by document id.
  619. """
  620. DocumentSegment.query.filter_by(document_id=dataset_document_id).update(update_params)
  621. db.session.commit()
  622. class DocumentIsPausedException(Exception):
  623. pass