| 12345678910111213141516171819202122232425262728293031323334353637383940 | 
							- import os
 
- import dashscope
 
- import pytest
 
- from core.model_runtime.entities.rerank_entities import RerankResult
 
- from core.model_runtime.errors.validate import CredentialsValidateFailedError
 
- from core.model_runtime.model_providers.tongyi.rerank.rerank import GTERerankModel
 
- def test_validate_credentials():
 
-     model = GTERerankModel()
 
-     with pytest.raises(CredentialsValidateFailedError):
 
-         model.validate_credentials(model="get-rank", credentials={"dashscope_api_key": "invalid_key"})
 
-     model.validate_credentials(
 
-         model="get-rank", credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")}
 
-     )
 
- def test_invoke_model():
 
-     model = GTERerankModel()
 
-     result = model.invoke(
 
-         model=dashscope.TextReRank.Models.gte_rerank,
 
-         credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")},
 
-         query="什么是文本排序模型",
 
-         docs=[
 
-             "文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序",
 
-             "量子计算是计算科学的一个前沿领域",
 
-             "预训练语言模型的发展给文本排序模型带来了新的进展",
 
-         ],
 
-         score_threshold=0.7,
 
-     )
 
-     assert isinstance(result, RerankResult)
 
-     assert len(result.docs) == 1
 
-     assert result.docs[0].index == 0
 
-     assert result.docs[0].score >= 0.7
 
 
  |