12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- from typing import List, Optional
- from langchain.schema import Document
- from core.model_manager import ModelInstance
- class RerankRunner:
- def __init__(self, rerank_model_instance: ModelInstance) -> None:
- self.rerank_model_instance = rerank_model_instance
- def run(self, query: str, documents: List[Document], score_threshold: Optional[float] = None,
- top_n: Optional[int] = None, user: Optional[str] = None) -> List[Document]:
- """
- Run rerank model
- :param query: search query
- :param documents: documents for reranking
- :param score_threshold: score threshold
- :param top_n: top n
- :param user: unique user id if needed
- :return:
- """
- docs = []
- doc_id = []
- unique_documents = []
- for document in documents:
- if document.metadata['doc_id'] not in doc_id:
- doc_id.append(document.metadata['doc_id'])
- docs.append(document.page_content)
- unique_documents.append(document)
- documents = unique_documents
- rerank_result = self.rerank_model_instance.invoke_rerank(
- query=query,
- docs=docs,
- score_threshold=score_threshold,
- top_n=top_n,
- user=user
- )
- rerank_documents = []
- for result in rerank_result.docs:
- # format document
- rerank_document = Document(
- page_content=result.text,
- metadata={
- "doc_id": documents[result.index].metadata['doc_id'],
- "doc_hash": documents[result.index].metadata['doc_hash'],
- "document_id": documents[result.index].metadata['document_id'],
- "dataset_id": documents[result.index].metadata['dataset_id'],
- 'score': result.score
- }
- )
- rerank_documents.append(rerank_document)
- return rerank_documents
|