123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051 |
- from flask import current_app
- from langchain.embeddings import OpenAIEmbeddings
- from core.embedding.cached_embedding import CacheEmbedding
- from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
- from core.index.vector_index.vector_index import VectorIndex
- from core.model_manager import ModelManager
- from core.model_runtime.entities.model_entities import ModelType
- from models.dataset import Dataset
- class IndexBuilder:
- @classmethod
- def get_index(cls, dataset: Dataset, indexing_technique: str, ignore_high_quality_check: bool = False):
- if indexing_technique == "high_quality":
- if not ignore_high_quality_check and dataset.indexing_technique != 'high_quality':
- return None
- model_manager = ModelManager()
- embedding_model = model_manager.get_model_instance(
- tenant_id=dataset.tenant_id,
- model_type=ModelType.TEXT_EMBEDDING,
- provider=dataset.embedding_model_provider,
- model=dataset.embedding_model
- )
- embeddings = CacheEmbedding(embedding_model)
- return VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
- elif indexing_technique == "economy":
- return KeywordTableIndex(
- dataset=dataset,
- config=KeywordTableConfig(
- max_keywords_per_chunk=10
- )
- )
- else:
- raise ValueError('Unknown indexing technique')
- @classmethod
- def get_default_high_quality_index(cls, dataset: Dataset):
- embeddings = OpenAIEmbeddings(openai_api_key=' ')
- return VectorIndex(
- dataset=dataset,
- config=current_app.config,
- embeddings=embeddings
- )
|