| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291 | import osfrom collections.abc import Generatorimport pytestfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDeltafrom core.model_runtime.entities.message_entities import (    AssistantPromptMessage,    PromptMessageTool,    SystemPromptMessage,    TextPromptMessageContent,    UserPromptMessage,)from core.model_runtime.entities.model_entities import AIModelEntityfrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.chatglm.llm.llm import ChatGLMLargeLanguageModelfrom tests.integration_tests.model_runtime.__mock.openai import setup_openai_mockdef test_predefined_models():    model = ChatGLMLargeLanguageModel()    model_schemas = model.predefined_models()    assert len(model_schemas) >= 1    assert isinstance(model_schemas[0], AIModelEntity)@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)def test_validate_credentials_for_chat_model(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='chatglm2-6b',            credentials={                'api_base': 'invalid_key'            }        )    model.validate_credentials(        model='chatglm2-6b',        credentials={            'api_base': os.environ.get('CHATGLM_API_BASE')        }    )@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)def test_invoke_model(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model='chatglm2-6b',        credentials={            'api_base': os.environ.get('CHATGLM_API_BASE')        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ],        model_parameters={            'temperature': 0.7,            'top_p': 1.0,        },        stop=['you'],        user="abc-123",        stream=False    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0    assert response.usage.total_tokens > 0@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)def test_invoke_stream_model(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model='chatglm2-6b',        credentials={            'api_base': os.environ.get('CHATGLM_API_BASE')        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ],        model_parameters={            'temperature': 0.7,            'top_p': 1.0,        },        stop=['you'],        stream=True,        user="abc-123"    )    assert isinstance(response, Generator)    for chunk in response:        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)def test_invoke_stream_model_with_functions(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model='chatglm3-6b',        credentials={            'api_base': os.environ.get('CHATGLM_API_BASE')        },        prompt_messages=[            SystemPromptMessage(                content='你是一个天气机器人,你不知道今天的天气怎么样,你需要通过调用一个函数来获取天气信息。'            ),            UserPromptMessage(                content='波士顿天气如何?'            )        ],        model_parameters={            'temperature': 0,            'top_p': 1.0,        },        stop=['you'],        user='abc-123',        stream=True,        tools=[            PromptMessageTool(                name='get_current_weather',                description='Get the current weather in a given location',                parameters={                    "type": "object",                    "properties": {                        "location": {                        "type": "string",                            "description": "The city and state e.g. San Francisco, CA"                        },                        "unit": {                            "type": "string",                            "enum": ["celsius", "fahrenheit"]                        }                    },                    "required": [                        "location"                    ]                }            )        ]    )    assert isinstance(response, Generator)        call: LLMResultChunk = None    chunks = []    for chunk in response:        chunks.append(chunk)        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else True        if chunk.delta.message.tool_calls and len(chunk.delta.message.tool_calls) > 0:            call = chunk            break    assert call is not None    assert call.delta.message.tool_calls[0].function.name == 'get_current_weather'@pytest.mark.parametrize('setup_openai_mock', [['chat']], indirect=True)def test_invoke_model_with_functions(setup_openai_mock):    model = ChatGLMLargeLanguageModel()    response = model.invoke(        model='chatglm3-6b',        credentials={            'api_base': os.environ.get('CHATGLM_API_BASE')        },        prompt_messages=[            UserPromptMessage(                content='What is the weather like in San Francisco?'            )        ],        model_parameters={            'temperature': 0.7,            'top_p': 1.0,        },        stop=['you'],        user='abc-123',        stream=False,        tools=[            PromptMessageTool(                name='get_current_weather',                description='Get the current weather in a given location',                parameters={                    "type": "object",                    "properties": {                        "location": {                        "type": "string",                            "description": "The city and state e.g. San Francisco, CA"                        },                        "unit": {                            "type": "string",                            "enum": [                                "c",                                "f"                            ]                        }                    },                    "required": [                        "location"                    ]                }            )        ]    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0    assert response.usage.total_tokens > 0    assert response.message.tool_calls[0].function.name == 'get_current_weather'def test_get_num_tokens():    model = ChatGLMLargeLanguageModel()    num_tokens = model.get_num_tokens(        model='chatglm2-6b',        credentials={            'api_base': os.environ.get('CHATGLM_API_BASE')        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ],        tools=[            PromptMessageTool(                name='get_current_weather',                description='Get the current weather in a given location',                parameters={                    "type": "object",                    "properties": {                        "location": {                        "type": "string",                            "description": "The city and state e.g. San Francisco, CA"                        },                        "unit": {                            "type": "string",                            "enum": [                                "c",                                "f"                            ]                        }                    },                    "required": [                        "location"                    ]                }            )        ]    )    assert isinstance(num_tokens, int)    assert num_tokens == 77    num_tokens = model.get_num_tokens(        model='chatglm2-6b',        credentials={            'api_base': os.environ.get('CHATGLM_API_BASE')        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ],    )    assert isinstance(num_tokens, int)    assert num_tokens == 21
 |