node.py 28 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701
  1. import json
  2. from collections.abc import Generator, Mapping, Sequence
  3. from typing import TYPE_CHECKING, Any, Optional, cast
  4. from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
  5. from core.entities.model_entities import ModelStatus
  6. from core.entities.provider_entities import QuotaUnit
  7. from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
  8. from core.memory.token_buffer_memory import TokenBufferMemory
  9. from core.model_manager import ModelInstance, ModelManager
  10. from core.model_runtime.entities import (
  11. AudioPromptMessageContent,
  12. ImagePromptMessageContent,
  13. PromptMessage,
  14. PromptMessageContentType,
  15. TextPromptMessageContent,
  16. )
  17. from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage
  18. from core.model_runtime.entities.model_entities import ModelType
  19. from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
  20. from core.model_runtime.utils.encoders import jsonable_encoder
  21. from core.prompt.advanced_prompt_transform import AdvancedPromptTransform
  22. from core.prompt.entities.advanced_prompt_entities import CompletionModelPromptTemplate, MemoryConfig
  23. from core.prompt.utils.prompt_message_util import PromptMessageUtil
  24. from core.variables import (
  25. ArrayAnySegment,
  26. ArrayFileSegment,
  27. ArraySegment,
  28. FileSegment,
  29. NoneSegment,
  30. ObjectSegment,
  31. StringSegment,
  32. )
  33. from core.workflow.constants import SYSTEM_VARIABLE_NODE_ID
  34. from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResult
  35. from core.workflow.enums import SystemVariableKey
  36. from core.workflow.graph_engine.entities.event import InNodeEvent
  37. from core.workflow.nodes.base import BaseNode
  38. from core.workflow.nodes.enums import NodeType
  39. from core.workflow.nodes.event import (
  40. ModelInvokeCompletedEvent,
  41. NodeEvent,
  42. RunCompletedEvent,
  43. RunRetrieverResourceEvent,
  44. RunStreamChunkEvent,
  45. )
  46. from core.workflow.utils.variable_template_parser import VariableTemplateParser
  47. from extensions.ext_database import db
  48. from models.model import Conversation
  49. from models.provider import Provider, ProviderType
  50. from models.workflow import WorkflowNodeExecutionStatus
  51. from .entities import (
  52. LLMNodeChatModelMessage,
  53. LLMNodeCompletionModelPromptTemplate,
  54. LLMNodeData,
  55. ModelConfig,
  56. )
  57. if TYPE_CHECKING:
  58. from core.file.models import File
  59. class LLMNode(BaseNode[LLMNodeData]):
  60. _node_data_cls = LLMNodeData
  61. _node_type = NodeType.LLM
  62. def _run(self) -> NodeRunResult | Generator[NodeEvent | InNodeEvent, None, None]:
  63. node_inputs = None
  64. process_data = None
  65. try:
  66. # init messages template
  67. self.node_data.prompt_template = self._transform_chat_messages(self.node_data.prompt_template)
  68. # fetch variables and fetch values from variable pool
  69. inputs = self._fetch_inputs(node_data=self.node_data)
  70. # fetch jinja2 inputs
  71. jinja_inputs = self._fetch_jinja_inputs(node_data=self.node_data)
  72. # merge inputs
  73. inputs.update(jinja_inputs)
  74. node_inputs = {}
  75. # fetch files
  76. files = (
  77. self._fetch_files(selector=self.node_data.vision.configs.variable_selector)
  78. if self.node_data.vision.enabled
  79. else []
  80. )
  81. if files:
  82. node_inputs["#files#"] = [file.to_dict() for file in files]
  83. # fetch context value
  84. generator = self._fetch_context(node_data=self.node_data)
  85. context = None
  86. for event in generator:
  87. if isinstance(event, RunRetrieverResourceEvent):
  88. context = event.context
  89. yield event
  90. if context:
  91. node_inputs["#context#"] = context # type: ignore
  92. # fetch model config
  93. model_instance, model_config = self._fetch_model_config(self.node_data.model)
  94. # fetch memory
  95. memory = self._fetch_memory(node_data_memory=self.node_data.memory, model_instance=model_instance)
  96. # fetch prompt messages
  97. if self.node_data.memory:
  98. query = self.graph_runtime_state.variable_pool.get((SYSTEM_VARIABLE_NODE_ID, SystemVariableKey.QUERY))
  99. if not query:
  100. raise ValueError("Query not found")
  101. query = query.text
  102. else:
  103. query = None
  104. prompt_messages, stop = self._fetch_prompt_messages(
  105. system_query=query,
  106. inputs=inputs,
  107. files=files,
  108. context=context,
  109. memory=memory,
  110. model_config=model_config,
  111. vision_detail=self.node_data.vision.configs.detail,
  112. prompt_template=self.node_data.prompt_template,
  113. memory_config=self.node_data.memory,
  114. )
  115. process_data = {
  116. "model_mode": model_config.mode,
  117. "prompts": PromptMessageUtil.prompt_messages_to_prompt_for_saving(
  118. model_mode=model_config.mode, prompt_messages=prompt_messages
  119. ),
  120. "model_provider": model_config.provider,
  121. "model_name": model_config.model,
  122. }
  123. # handle invoke result
  124. generator = self._invoke_llm(
  125. node_data_model=self.node_data.model,
  126. model_instance=model_instance,
  127. prompt_messages=prompt_messages,
  128. stop=stop,
  129. )
  130. result_text = ""
  131. usage = LLMUsage.empty_usage()
  132. finish_reason = None
  133. for event in generator:
  134. if isinstance(event, RunStreamChunkEvent):
  135. yield event
  136. elif isinstance(event, ModelInvokeCompletedEvent):
  137. result_text = event.text
  138. usage = event.usage
  139. finish_reason = event.finish_reason
  140. break
  141. except Exception as e:
  142. yield RunCompletedEvent(
  143. run_result=NodeRunResult(
  144. status=WorkflowNodeExecutionStatus.FAILED,
  145. error=str(e),
  146. inputs=node_inputs,
  147. process_data=process_data,
  148. )
  149. )
  150. return
  151. outputs = {"text": result_text, "usage": jsonable_encoder(usage), "finish_reason": finish_reason}
  152. yield RunCompletedEvent(
  153. run_result=NodeRunResult(
  154. status=WorkflowNodeExecutionStatus.SUCCEEDED,
  155. inputs=node_inputs,
  156. process_data=process_data,
  157. outputs=outputs,
  158. metadata={
  159. NodeRunMetadataKey.TOTAL_TOKENS: usage.total_tokens,
  160. NodeRunMetadataKey.TOTAL_PRICE: usage.total_price,
  161. NodeRunMetadataKey.CURRENCY: usage.currency,
  162. },
  163. llm_usage=usage,
  164. )
  165. )
  166. def _invoke_llm(
  167. self,
  168. node_data_model: ModelConfig,
  169. model_instance: ModelInstance,
  170. prompt_messages: list[PromptMessage],
  171. stop: Optional[list[str]] = None,
  172. ) -> Generator[NodeEvent, None, None]:
  173. db.session.close()
  174. invoke_result = model_instance.invoke_llm(
  175. prompt_messages=prompt_messages,
  176. model_parameters=node_data_model.completion_params,
  177. stop=stop,
  178. stream=True,
  179. user=self.user_id,
  180. )
  181. # handle invoke result
  182. generator = self._handle_invoke_result(invoke_result=invoke_result)
  183. usage = LLMUsage.empty_usage()
  184. for event in generator:
  185. yield event
  186. if isinstance(event, ModelInvokeCompletedEvent):
  187. usage = event.usage
  188. # deduct quota
  189. self.deduct_llm_quota(tenant_id=self.tenant_id, model_instance=model_instance, usage=usage)
  190. def _handle_invoke_result(self, invoke_result: LLMResult | Generator) -> Generator[NodeEvent, None, None]:
  191. if isinstance(invoke_result, LLMResult):
  192. return
  193. model = None
  194. prompt_messages: list[PromptMessage] = []
  195. full_text = ""
  196. usage = None
  197. finish_reason = None
  198. for result in invoke_result:
  199. text = result.delta.message.content
  200. full_text += text
  201. yield RunStreamChunkEvent(chunk_content=text, from_variable_selector=[self.node_id, "text"])
  202. if not model:
  203. model = result.model
  204. if not prompt_messages:
  205. prompt_messages = result.prompt_messages
  206. if not usage and result.delta.usage:
  207. usage = result.delta.usage
  208. if not finish_reason and result.delta.finish_reason:
  209. finish_reason = result.delta.finish_reason
  210. if not usage:
  211. usage = LLMUsage.empty_usage()
  212. yield ModelInvokeCompletedEvent(text=full_text, usage=usage, finish_reason=finish_reason)
  213. def _transform_chat_messages(
  214. self, messages: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate, /
  215. ) -> Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate:
  216. if isinstance(messages, LLMNodeCompletionModelPromptTemplate):
  217. if messages.edition_type == "jinja2" and messages.jinja2_text:
  218. messages.text = messages.jinja2_text
  219. return messages
  220. for message in messages:
  221. if message.edition_type == "jinja2" and message.jinja2_text:
  222. message.text = message.jinja2_text
  223. return messages
  224. def _fetch_jinja_inputs(self, node_data: LLMNodeData) -> dict[str, str]:
  225. variables = {}
  226. if not node_data.prompt_config:
  227. return variables
  228. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  229. variable_name = variable_selector.variable
  230. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  231. if variable is None:
  232. raise ValueError(f"Variable {variable_selector.variable} not found")
  233. def parse_dict(input_dict: Mapping[str, Any]) -> str:
  234. """
  235. Parse dict into string
  236. """
  237. # check if it's a context structure
  238. if "metadata" in input_dict and "_source" in input_dict["metadata"] and "content" in input_dict:
  239. return input_dict["content"]
  240. # else, parse the dict
  241. try:
  242. return json.dumps(input_dict, ensure_ascii=False)
  243. except Exception:
  244. return str(input_dict)
  245. if isinstance(variable, ArraySegment):
  246. result = ""
  247. for item in variable.value:
  248. if isinstance(item, dict):
  249. result += parse_dict(item)
  250. else:
  251. result += str(item)
  252. result += "\n"
  253. value = result.strip()
  254. elif isinstance(variable, ObjectSegment):
  255. value = parse_dict(variable.value)
  256. else:
  257. value = variable.text
  258. variables[variable_name] = value
  259. return variables
  260. def _fetch_inputs(self, node_data: LLMNodeData) -> dict[str, Any]:
  261. inputs = {}
  262. prompt_template = node_data.prompt_template
  263. variable_selectors = []
  264. if isinstance(prompt_template, list):
  265. for prompt in prompt_template:
  266. variable_template_parser = VariableTemplateParser(template=prompt.text)
  267. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  268. elif isinstance(prompt_template, CompletionModelPromptTemplate):
  269. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  270. variable_selectors = variable_template_parser.extract_variable_selectors()
  271. for variable_selector in variable_selectors:
  272. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  273. if variable is None:
  274. raise ValueError(f"Variable {variable_selector.variable} not found")
  275. if isinstance(variable, NoneSegment):
  276. continue
  277. inputs[variable_selector.variable] = variable.to_object()
  278. memory = node_data.memory
  279. if memory and memory.query_prompt_template:
  280. query_variable_selectors = VariableTemplateParser(
  281. template=memory.query_prompt_template
  282. ).extract_variable_selectors()
  283. for variable_selector in query_variable_selectors:
  284. variable = self.graph_runtime_state.variable_pool.get(variable_selector.value_selector)
  285. if variable is None:
  286. raise ValueError(f"Variable {variable_selector.variable} not found")
  287. if isinstance(variable, NoneSegment):
  288. continue
  289. inputs[variable_selector.variable] = variable.to_object()
  290. return inputs
  291. def _fetch_files(self, *, selector: Sequence[str]) -> Sequence["File"]:
  292. variable = self.graph_runtime_state.variable_pool.get(selector)
  293. if variable is None:
  294. return []
  295. if isinstance(variable, FileSegment):
  296. return [variable.value]
  297. if isinstance(variable, ArrayFileSegment):
  298. return variable.value
  299. # FIXME: Temporary fix for empty array,
  300. # all variables added to variable pool should be a Segment instance.
  301. if isinstance(variable, ArrayAnySegment) and len(variable.value) == 0:
  302. return []
  303. raise ValueError(f"Invalid variable type: {type(variable)}")
  304. def _fetch_context(self, node_data: LLMNodeData):
  305. if not node_data.context.enabled:
  306. return
  307. if not node_data.context.variable_selector:
  308. return
  309. context_value_variable = self.graph_runtime_state.variable_pool.get(node_data.context.variable_selector)
  310. if context_value_variable:
  311. if isinstance(context_value_variable, StringSegment):
  312. yield RunRetrieverResourceEvent(retriever_resources=[], context=context_value_variable.value)
  313. elif isinstance(context_value_variable, ArraySegment):
  314. context_str = ""
  315. original_retriever_resource = []
  316. for item in context_value_variable.value:
  317. if isinstance(item, str):
  318. context_str += item + "\n"
  319. else:
  320. if "content" not in item:
  321. raise ValueError(f"Invalid context structure: {item}")
  322. context_str += item["content"] + "\n"
  323. retriever_resource = self._convert_to_original_retriever_resource(item)
  324. if retriever_resource:
  325. original_retriever_resource.append(retriever_resource)
  326. yield RunRetrieverResourceEvent(
  327. retriever_resources=original_retriever_resource, context=context_str.strip()
  328. )
  329. def _convert_to_original_retriever_resource(self, context_dict: dict) -> Optional[dict]:
  330. if (
  331. "metadata" in context_dict
  332. and "_source" in context_dict["metadata"]
  333. and context_dict["metadata"]["_source"] == "knowledge"
  334. ):
  335. metadata = context_dict.get("metadata", {})
  336. source = {
  337. "position": metadata.get("position"),
  338. "dataset_id": metadata.get("dataset_id"),
  339. "dataset_name": metadata.get("dataset_name"),
  340. "document_id": metadata.get("document_id"),
  341. "document_name": metadata.get("document_name"),
  342. "data_source_type": metadata.get("document_data_source_type"),
  343. "segment_id": metadata.get("segment_id"),
  344. "retriever_from": metadata.get("retriever_from"),
  345. "score": metadata.get("score"),
  346. "hit_count": metadata.get("segment_hit_count"),
  347. "word_count": metadata.get("segment_word_count"),
  348. "segment_position": metadata.get("segment_position"),
  349. "index_node_hash": metadata.get("segment_index_node_hash"),
  350. "content": context_dict.get("content"),
  351. "page": metadata.get("page"),
  352. }
  353. return source
  354. return None
  355. def _fetch_model_config(
  356. self, node_data_model: ModelConfig
  357. ) -> tuple[ModelInstance, ModelConfigWithCredentialsEntity]:
  358. model_name = node_data_model.name
  359. provider_name = node_data_model.provider
  360. model_manager = ModelManager()
  361. model_instance = model_manager.get_model_instance(
  362. tenant_id=self.tenant_id, model_type=ModelType.LLM, provider=provider_name, model=model_name
  363. )
  364. provider_model_bundle = model_instance.provider_model_bundle
  365. model_type_instance = model_instance.model_type_instance
  366. model_type_instance = cast(LargeLanguageModel, model_type_instance)
  367. model_credentials = model_instance.credentials
  368. # check model
  369. provider_model = provider_model_bundle.configuration.get_provider_model(
  370. model=model_name, model_type=ModelType.LLM
  371. )
  372. if provider_model is None:
  373. raise ValueError(f"Model {model_name} not exist.")
  374. if provider_model.status == ModelStatus.NO_CONFIGURE:
  375. raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
  376. elif provider_model.status == ModelStatus.NO_PERMISSION:
  377. raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
  378. elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
  379. raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
  380. # model config
  381. completion_params = node_data_model.completion_params
  382. stop = []
  383. if "stop" in completion_params:
  384. stop = completion_params["stop"]
  385. del completion_params["stop"]
  386. # get model mode
  387. model_mode = node_data_model.mode
  388. if not model_mode:
  389. raise ValueError("LLM mode is required.")
  390. model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
  391. if not model_schema:
  392. raise ValueError(f"Model {model_name} not exist.")
  393. return model_instance, ModelConfigWithCredentialsEntity(
  394. provider=provider_name,
  395. model=model_name,
  396. model_schema=model_schema,
  397. mode=model_mode,
  398. provider_model_bundle=provider_model_bundle,
  399. credentials=model_credentials,
  400. parameters=completion_params,
  401. stop=stop,
  402. )
  403. def _fetch_memory(
  404. self, node_data_memory: Optional[MemoryConfig], model_instance: ModelInstance
  405. ) -> Optional[TokenBufferMemory]:
  406. if not node_data_memory:
  407. return None
  408. # get conversation id
  409. conversation_id_variable = self.graph_runtime_state.variable_pool.get(
  410. ["sys", SystemVariableKey.CONVERSATION_ID.value]
  411. )
  412. if not isinstance(conversation_id_variable, StringSegment):
  413. return None
  414. conversation_id = conversation_id_variable.value
  415. # get conversation
  416. conversation = (
  417. db.session.query(Conversation)
  418. .filter(Conversation.app_id == self.app_id, Conversation.id == conversation_id)
  419. .first()
  420. )
  421. if not conversation:
  422. return None
  423. memory = TokenBufferMemory(conversation=conversation, model_instance=model_instance)
  424. return memory
  425. def _fetch_prompt_messages(
  426. self,
  427. *,
  428. system_query: str | None = None,
  429. inputs: dict[str, str] | None = None,
  430. files: Sequence["File"],
  431. context: str | None = None,
  432. memory: TokenBufferMemory | None = None,
  433. model_config: ModelConfigWithCredentialsEntity,
  434. prompt_template: Sequence[LLMNodeChatModelMessage] | LLMNodeCompletionModelPromptTemplate,
  435. memory_config: MemoryConfig | None = None,
  436. vision_detail: ImagePromptMessageContent.DETAIL,
  437. ) -> tuple[list[PromptMessage], Optional[list[str]]]:
  438. inputs = inputs or {}
  439. prompt_transform = AdvancedPromptTransform(with_variable_tmpl=True)
  440. prompt_messages = prompt_transform.get_prompt(
  441. prompt_template=prompt_template,
  442. inputs=inputs,
  443. query=system_query or "",
  444. files=files,
  445. context=context,
  446. memory_config=memory_config,
  447. memory=memory,
  448. model_config=model_config,
  449. )
  450. stop = model_config.stop
  451. filtered_prompt_messages = []
  452. for prompt_message in prompt_messages:
  453. if prompt_message.is_empty():
  454. continue
  455. if not isinstance(prompt_message.content, str):
  456. prompt_message_content = []
  457. for content_item in prompt_message.content or []:
  458. if isinstance(content_item, ImagePromptMessageContent):
  459. # Override vision config if LLM node has vision config,
  460. # cuz vision detail is related to the configuration from FileUpload feature.
  461. content_item.detail = vision_detail
  462. prompt_message_content.append(content_item)
  463. elif isinstance(content_item, TextPromptMessageContent | AudioPromptMessageContent):
  464. prompt_message_content.append(content_item)
  465. if len(prompt_message_content) > 1:
  466. prompt_message.content = prompt_message_content
  467. elif (
  468. len(prompt_message_content) == 1 and prompt_message_content[0].type == PromptMessageContentType.TEXT
  469. ):
  470. prompt_message.content = prompt_message_content[0].data
  471. filtered_prompt_messages.append(prompt_message)
  472. if not filtered_prompt_messages:
  473. raise ValueError(
  474. "No prompt found in the LLM configuration. "
  475. "Please ensure a prompt is properly configured before proceeding."
  476. )
  477. return filtered_prompt_messages, stop
  478. @classmethod
  479. def deduct_llm_quota(cls, tenant_id: str, model_instance: ModelInstance, usage: LLMUsage) -> None:
  480. provider_model_bundle = model_instance.provider_model_bundle
  481. provider_configuration = provider_model_bundle.configuration
  482. if provider_configuration.using_provider_type != ProviderType.SYSTEM:
  483. return
  484. system_configuration = provider_configuration.system_configuration
  485. quota_unit = None
  486. for quota_configuration in system_configuration.quota_configurations:
  487. if quota_configuration.quota_type == system_configuration.current_quota_type:
  488. quota_unit = quota_configuration.quota_unit
  489. if quota_configuration.quota_limit == -1:
  490. return
  491. break
  492. used_quota = None
  493. if quota_unit:
  494. if quota_unit == QuotaUnit.TOKENS:
  495. used_quota = usage.total_tokens
  496. elif quota_unit == QuotaUnit.CREDITS:
  497. used_quota = 1
  498. if "gpt-4" in model_instance.model:
  499. used_quota = 20
  500. else:
  501. used_quota = 1
  502. if used_quota is not None and system_configuration.current_quota_type is not None:
  503. db.session.query(Provider).filter(
  504. Provider.tenant_id == tenant_id,
  505. Provider.provider_name == model_instance.provider,
  506. Provider.provider_type == ProviderType.SYSTEM.value,
  507. Provider.quota_type == system_configuration.current_quota_type.value,
  508. Provider.quota_limit > Provider.quota_used,
  509. ).update({"quota_used": Provider.quota_used + used_quota})
  510. db.session.commit()
  511. @classmethod
  512. def _extract_variable_selector_to_variable_mapping(
  513. cls,
  514. *,
  515. graph_config: Mapping[str, Any],
  516. node_id: str,
  517. node_data: LLMNodeData,
  518. ) -> Mapping[str, Sequence[str]]:
  519. prompt_template = node_data.prompt_template
  520. variable_selectors = []
  521. if isinstance(prompt_template, list) and all(
  522. isinstance(prompt, LLMNodeChatModelMessage) for prompt in prompt_template
  523. ):
  524. for prompt in prompt_template:
  525. if prompt.edition_type != "jinja2":
  526. variable_template_parser = VariableTemplateParser(template=prompt.text)
  527. variable_selectors.extend(variable_template_parser.extract_variable_selectors())
  528. elif isinstance(prompt_template, LLMNodeCompletionModelPromptTemplate):
  529. if prompt_template.edition_type != "jinja2":
  530. variable_template_parser = VariableTemplateParser(template=prompt_template.text)
  531. variable_selectors = variable_template_parser.extract_variable_selectors()
  532. else:
  533. raise ValueError(f"Invalid prompt template type: {type(prompt_template)}")
  534. variable_mapping = {}
  535. for variable_selector in variable_selectors:
  536. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  537. memory = node_data.memory
  538. if memory and memory.query_prompt_template:
  539. query_variable_selectors = VariableTemplateParser(
  540. template=memory.query_prompt_template
  541. ).extract_variable_selectors()
  542. for variable_selector in query_variable_selectors:
  543. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  544. if node_data.context.enabled:
  545. variable_mapping["#context#"] = node_data.context.variable_selector
  546. if node_data.vision.enabled:
  547. variable_mapping["#files#"] = ["sys", SystemVariableKey.FILES.value]
  548. if node_data.memory:
  549. variable_mapping["#sys.query#"] = ["sys", SystemVariableKey.QUERY.value]
  550. if node_data.prompt_config:
  551. enable_jinja = False
  552. if isinstance(prompt_template, list):
  553. for prompt in prompt_template:
  554. if prompt.edition_type == "jinja2":
  555. enable_jinja = True
  556. break
  557. else:
  558. if prompt_template.edition_type == "jinja2":
  559. enable_jinja = True
  560. if enable_jinja:
  561. for variable_selector in node_data.prompt_config.jinja2_variables or []:
  562. variable_mapping[variable_selector.variable] = variable_selector.value_selector
  563. variable_mapping = {node_id + "." + key: value for key, value in variable_mapping.items()}
  564. return variable_mapping
  565. @classmethod
  566. def get_default_config(cls, filters: Optional[dict] = None) -> dict:
  567. return {
  568. "type": "llm",
  569. "config": {
  570. "prompt_templates": {
  571. "chat_model": {
  572. "prompts": [
  573. {"role": "system", "text": "You are a helpful AI assistant.", "edition_type": "basic"}
  574. ]
  575. },
  576. "completion_model": {
  577. "conversation_histories_role": {"user_prefix": "Human", "assistant_prefix": "Assistant"},
  578. "prompt": {
  579. "text": "Here is the chat histories between human and assistant, inside "
  580. "<histories></histories> XML tags.\n\n<histories>\n{{"
  581. "#histories#}}\n</histories>\n\n\nHuman: {{#sys.query#}}\n\nAssistant:",
  582. "edition_type": "basic",
  583. },
  584. "stop": ["Human:"],
  585. },
  586. }
  587. },
  588. }