| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385 | import datetimeimport jsonimport loggingimport randomimport timeimport uuidfrom typing import Optional, castfrom flask import current_appfrom flask_login import current_userfrom sqlalchemy import funcfrom core.errors.error import LLMBadRequestError, ProviderTokenNotInitErrorfrom core.model_manager import ModelManagerfrom core.model_runtime.entities.model_entities import ModelTypefrom core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModelfrom core.rag.datasource.keyword.keyword_factory import Keywordfrom core.rag.models.document import Document as RAGDocumentfrom events.dataset_event import dataset_was_deletedfrom events.document_event import document_was_deletedfrom extensions.ext_database import dbfrom extensions.ext_redis import redis_clientfrom libs import helperfrom models.account import Accountfrom models.dataset import (    AppDatasetJoin,    Dataset,    DatasetCollectionBinding,    DatasetProcessRule,    DatasetQuery,    Document,    DocumentSegment,)from models.model import UploadFilefrom models.source import DataSourceBindingfrom services.errors.account import NoPermissionErrorfrom services.errors.dataset import DatasetNameDuplicateErrorfrom services.errors.document import DocumentIndexingErrorfrom services.errors.file import FileNotExistsErrorfrom services.feature_service import FeatureModel, FeatureServicefrom services.tag_service import TagServicefrom services.vector_service import VectorServicefrom tasks.clean_notion_document_task import clean_notion_document_taskfrom tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_taskfrom tasks.delete_segment_from_index_task import delete_segment_from_index_taskfrom tasks.disable_segment_from_index_task import disable_segment_from_index_taskfrom tasks.document_indexing_task import document_indexing_taskfrom tasks.document_indexing_update_task import document_indexing_update_taskfrom tasks.duplicate_document_indexing_task import duplicate_document_indexing_taskfrom tasks.recover_document_indexing_task import recover_document_indexing_taskfrom tasks.retry_document_indexing_task import retry_document_indexing_taskclass DatasetService:    @staticmethod    def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):        if user:            permission_filter = db.or_(Dataset.created_by == user.id,                                       Dataset.permission == 'all_team_members')        else:            permission_filter = Dataset.permission == 'all_team_members'        query = Dataset.query.filter(            db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \            .order_by(Dataset.created_at.desc())        if search:            query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))        if tag_ids:            target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)            if target_ids:                query = query.filter(db.and_(Dataset.id.in_(target_ids)))            else:                return [], 0        datasets = query.paginate(            page=page,            per_page=per_page,            max_per_page=100,            error_out=False        )        return datasets.items, datasets.total    @staticmethod    def get_process_rules(dataset_id):        # get the latest process rule        dataset_process_rule = db.session.query(DatasetProcessRule). \            filter(DatasetProcessRule.dataset_id == dataset_id). \            order_by(DatasetProcessRule.created_at.desc()). \            limit(1). \            one_or_none()        if dataset_process_rule:            mode = dataset_process_rule.mode            rules = dataset_process_rule.rules_dict        else:            mode = DocumentService.DEFAULT_RULES['mode']            rules = DocumentService.DEFAULT_RULES['rules']        return {            'mode': mode,            'rules': rules        }    @staticmethod    def get_datasets_by_ids(ids, tenant_id):        datasets = Dataset.query.filter(Dataset.id.in_(ids),                                        Dataset.tenant_id == tenant_id).paginate(            page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)        return datasets.items, datasets.total    @staticmethod    def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):        # check if dataset name already exists        if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():            raise DatasetNameDuplicateError(                f'Dataset with name {name} already exists.')        embedding_model = None        if indexing_technique == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=tenant_id,                model_type=ModelType.TEXT_EMBEDDING            )        dataset = Dataset(name=name, indexing_technique=indexing_technique)        # dataset = Dataset(name=name, provider=provider, config=config)        dataset.created_by = account.id        dataset.updated_by = account.id        dataset.tenant_id = tenant_id        dataset.embedding_model_provider = embedding_model.provider if embedding_model else None        dataset.embedding_model = embedding_model.model if embedding_model else None        db.session.add(dataset)        db.session.commit()        return dataset    @staticmethod    def get_dataset(dataset_id):        return Dataset.query.filter_by(            id=dataset_id        ).first()    @staticmethod    def check_dataset_model_setting(dataset):        if dataset.indexing_technique == 'high_quality':            try:                model_manager = ModelManager()                model_manager.get_model_instance(                    tenant_id=dataset.tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model                )            except LLMBadRequestError:                raise ValueError(                    "No Embedding Model available. Please configure a valid provider "                    "in the Settings -> Model Provider.")            except ProviderTokenNotInitError as ex:                raise ValueError(f"The dataset in unavailable, due to: "                                 f"{ex.description}")    @staticmethod    def update_dataset(dataset_id, data, user):        filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}        dataset = DatasetService.get_dataset(dataset_id)        DatasetService.check_dataset_permission(dataset, user)        action = None        if dataset.indexing_technique != data['indexing_technique']:            # if update indexing_technique            if data['indexing_technique'] == 'economy':                action = 'remove'                filtered_data['embedding_model'] = None                filtered_data['embedding_model_provider'] = None                filtered_data['collection_binding_id'] = None            elif data['indexing_technique'] == 'high_quality':                action = 'add'                # get embedding model setting                try:                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=data['embedding_model_provider'],                        model_type=ModelType.TEXT_EMBEDDING,                        model=data['embedding_model']                    )                    filtered_data['embedding_model'] = embedding_model.model                    filtered_data['embedding_model_provider'] = embedding_model.provider                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                        embedding_model.provider,                        embedding_model.model                    )                    filtered_data['collection_binding_id'] = dataset_collection_binding.id                except LLMBadRequestError:                    raise ValueError(                        "No Embedding Model available. Please configure a valid provider "                        "in the Settings -> Model Provider.")                except ProviderTokenNotInitError as ex:                    raise ValueError(ex.description)        else:            if data['embedding_model_provider'] != dataset.embedding_model_provider or \                    data['embedding_model'] != dataset.embedding_model:                action = 'update'                try:                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=data['embedding_model_provider'],                        model_type=ModelType.TEXT_EMBEDDING,                        model=data['embedding_model']                    )                    filtered_data['embedding_model'] = embedding_model.model                    filtered_data['embedding_model_provider'] = embedding_model.provider                    dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                        embedding_model.provider,                        embedding_model.model                    )                    filtered_data['collection_binding_id'] = dataset_collection_binding.id                except LLMBadRequestError:                    raise ValueError(                        "No Embedding Model available. Please configure a valid provider "                        "in the Settings -> Model Provider.")                except ProviderTokenNotInitError as ex:                    raise ValueError(ex.description)        filtered_data['updated_by'] = user.id        filtered_data['updated_at'] = datetime.datetime.now()        # update Retrieval model        filtered_data['retrieval_model'] = data['retrieval_model']        dataset.query.filter_by(id=dataset_id).update(filtered_data)        db.session.commit()        if action:            deal_dataset_vector_index_task.delay(dataset_id, action)        return dataset    @staticmethod    def delete_dataset(dataset_id, user):        # todo: cannot delete dataset if it is being processed        dataset = DatasetService.get_dataset(dataset_id)        if dataset is None:            return False        DatasetService.check_dataset_permission(dataset, user)        dataset_was_deleted.send(dataset)        db.session.delete(dataset)        db.session.commit()        return True    @staticmethod    def check_dataset_permission(dataset, user):        if dataset.tenant_id != user.current_tenant_id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')        if dataset.permission == 'only_me' and dataset.created_by != user.id:            logging.debug(                f'User {user.id} does not have permission to access dataset {dataset.id}')            raise NoPermissionError(                'You do not have permission to access this dataset.')    @staticmethod    def get_dataset_queries(dataset_id: str, page: int, per_page: int):        dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \            .order_by(db.desc(DatasetQuery.created_at)) \            .paginate(            page=page, per_page=per_page, max_per_page=100, error_out=False        )        return dataset_queries.items, dataset_queries.total    @staticmethod    def get_related_apps(dataset_id: str):        return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \            .order_by(db.desc(AppDatasetJoin.created_at)).all()class DocumentService:    DEFAULT_RULES = {        'mode': 'custom',        'rules': {            'pre_processing_rules': [                {'id': 'remove_extra_spaces', 'enabled': True},                {'id': 'remove_urls_emails', 'enabled': False}            ],            'segmentation': {                'delimiter': '\n',                'max_tokens': 500,                'chunk_overlap': 50            }        }    }    DOCUMENT_METADATA_SCHEMA = {        "book": {            "title": str,            "language": str,            "author": str,            "publisher": str,            "publication_date": str,            "isbn": str,            "category": str,        },        "web_page": {            "title": str,            "url": str,            "language": str,            "publish_date": str,            "author/publisher": str,            "topic/keywords": str,            "description": str,        },        "paper": {            "title": str,            "language": str,            "author": str,            "publish_date": str,            "journal/conference_name": str,            "volume/issue/page_numbers": str,            "doi": str,            "topic/keywords": str,            "abstract": str,        },        "social_media_post": {            "platform": str,            "author/username": str,            "publish_date": str,            "post_url": str,            "topic/tags": str,        },        "wikipedia_entry": {            "title": str,            "language": str,            "web_page_url": str,            "last_edit_date": str,            "editor/contributor": str,            "summary/introduction": str,        },        "personal_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "tags/category": str,        },        "business_document": {            "title": str,            "author": str,            "creation_date": str,            "last_modified_date": str,            "document_type": str,            "department/team": str,        },        "im_chat_log": {            "chat_platform": str,            "chat_participants/group_name": str,            "start_date": str,            "end_date": str,            "summary": str,        },        "synced_from_notion": {            "title": str,            "language": str,            "author/creator": str,            "creation_date": str,            "last_modified_date": str,            "notion_page_link": str,            "category/tags": str,            "description": str,        },        "synced_from_github": {            "repository_name": str,            "repository_description": str,            "repository_owner/organization": str,            "code_filename": str,            "code_file_path": str,            "programming_language": str,            "github_link": str,            "open_source_license": str,            "commit_date": str,            "commit_author": str,        },        "others": dict    }    @staticmethod    def get_document(dataset_id: str, document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id,            Document.dataset_id == dataset_id        ).first()        return document    @staticmethod    def get_document_by_id(document_id: str) -> Optional[Document]:        document = db.session.query(Document).filter(            Document.id == document_id        ).first()        return document    @staticmethod    def get_document_by_dataset_id(dataset_id: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.enabled == True        ).all()        return documents    @staticmethod    def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.dataset_id == dataset_id,            Document.indexing_status.in_(['error', 'paused'])        ).all()        return documents    @staticmethod    def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:        documents = db.session.query(Document).filter(            Document.batch == batch,            Document.dataset_id == dataset_id,            Document.tenant_id == current_user.current_tenant_id        ).all()        return documents    @staticmethod    def get_document_file_detail(file_id: str):        file_detail = db.session.query(UploadFile). \            filter(UploadFile.id == file_id). \            one_or_none()        return file_detail    @staticmethod    def check_archived(document):        if document.archived:            return True        else:            return False    @staticmethod    def delete_document(document):        # trigger document_was_deleted signal        document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)        db.session.delete(document)        db.session.commit()    @staticmethod    def pause_document(document):        if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:            raise DocumentIndexingError()        # update document to be paused        document.is_paused = True        document.paused_by = current_user.id        document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        db.session.add(document)        db.session.commit()        # set document paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.setnx(indexing_cache_key, "True")    @staticmethod    def recover_document(document):        if not document.is_paused:            raise DocumentIndexingError()        # update document to be recover        document.is_paused = False        document.paused_by = None        document.paused_at = None        db.session.add(document)        db.session.commit()        # delete paused flag        indexing_cache_key = 'document_{}_is_paused'.format(document.id)        redis_client.delete(indexing_cache_key)        # trigger async task        recover_document_indexing_task.delay(document.dataset_id, document.id)    @staticmethod    def retry_document(dataset_id: str, documents: list[Document]):        for document in documents:            # retry document indexing            document.indexing_status = 'waiting'            db.session.add(document)            db.session.commit()            # add retry flag            retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)            redis_client.setex(retry_indexing_cache_key, 600, 1)        # trigger async task        document_ids = [document.id for document in documents]        retry_document_indexing_task.delay(dataset_id, document_ids)    @staticmethod    def get_documents_position(dataset_id):        document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()        if document:            return document.position + 1        else:            return 1    @staticmethod    def save_document_with_dataset_id(dataset: Dataset, document_data: dict,                                      account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                      created_from: str = 'web'):        # check document limit        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            if 'original_document_id' not in document_data or not document_data['original_document_id']:                count = 0                if document_data["data_source"]["type"] == "upload_file":                    upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                    count = len(upload_file_list)                elif document_data["data_source"]["type"] == "notion_import":                    notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                    for notion_info in notion_info_list:                        count = count + len(notion_info['pages'])                batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])                if count > batch_upload_limit:                    raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")                DocumentService.check_documents_upload_quota(count, features)        # if dataset is empty, update dataset data_source_type        if not dataset.data_source_type:            dataset.data_source_type = document_data["data_source"]["type"]        if not dataset.indexing_technique:            if 'indexing_technique' not in document_data \                    or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:                raise ValueError("Indexing technique is required")            dataset.indexing_technique = document_data["indexing_technique"]            if document_data["indexing_technique"] == 'high_quality':                model_manager = ModelManager()                embedding_model = model_manager.get_default_model_instance(                    tenant_id=current_user.current_tenant_id,                    model_type=ModelType.TEXT_EMBEDDING                )                dataset.embedding_model = embedding_model.model                dataset.embedding_model_provider = embedding_model.provider                dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                    embedding_model.provider,                    embedding_model.model                )                dataset.collection_binding_id = dataset_collection_binding.id                if not dataset.retrieval_model:                    default_retrieval_model = {                        'search_method': 'semantic_search',                        'reranking_enable': False,                        'reranking_model': {                            'reranking_provider_name': '',                            'reranking_model_name': ''                        },                        'top_k': 2,                        'score_threshold_enabled': False                    }                    dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(                        'retrieval_model') else default_retrieval_model        documents = []        batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))        if document_data.get("original_document_id"):            document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)            documents.append(document)        else:            # save process rule            if not dataset_process_rule:                process_rule = document_data["process_rule"]                if process_rule["mode"] == "custom":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(process_rule["rules"]),                        created_by=account.id                    )                elif process_rule["mode"] == "automatic":                    dataset_process_rule = DatasetProcessRule(                        dataset_id=dataset.id,                        mode=process_rule["mode"],                        rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                        created_by=account.id                    )                db.session.add(dataset_process_rule)                db.session.commit()            position = DocumentService.get_documents_position(dataset.id)            document_ids = []            duplicate_document_ids = []            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }                    # check duplicate                    if document_data.get('duplicate', False):                        document = Document.query.filter_by(                            dataset_id=dataset.id,                            tenant_id=current_user.current_tenant_id,                            data_source_type='upload_file',                            enabled=True,                            name=file_name                        ).first()                        if document:                            document.dataset_process_rule_id = dataset_process_rule.id                            document.updated_at = datetime.datetime.utcnow()                            document.created_from = created_from                            document.doc_form = document_data['doc_form']                            document.doc_language = document_data['doc_language']                            document.data_source_info = json.dumps(data_source_info)                            document.batch = batch                            document.indexing_status = 'waiting'                            db.session.add(document)                            documents.append(document)                            duplicate_document_ids.append(document.id)                            continue                    document = DocumentService.build_document(dataset, dataset_process_rule.id,                                                              document_data["data_source"]["type"],                                                              document_data["doc_form"],                                                              document_data["doc_language"],                                                              data_source_info, created_from, position,                                                              account, file_name, batch)                    db.session.add(document)                    db.session.flush()                    document_ids.append(document.id)                    documents.append(document)                    position += 1            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                exist_page_ids = []                exist_document = dict()                documents = Document.query.filter_by(                    dataset_id=dataset.id,                    tenant_id=current_user.current_tenant_id,                    data_source_type='notion_import',                    enabled=True                ).all()                if documents:                    for document in documents:                        data_source_info = json.loads(document.data_source_info)                        exist_page_ids.append(data_source_info['notion_page_id'])                        exist_document[data_source_info['notion_page_id']] = document.id                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        if page['page_id'] not in exist_page_ids:                            data_source_info = {                                "notion_workspace_id": workspace_id,                                "notion_page_id": page['page_id'],                                "notion_page_icon": page['page_icon'],                                "type": page['type']                            }                            document = DocumentService.build_document(dataset, dataset_process_rule.id,                                                                      document_data["data_source"]["type"],                                                                      document_data["doc_form"],                                                                      document_data["doc_language"],                                                                      data_source_info, created_from, position,                                                                      account, page['page_name'], batch)                            db.session.add(document)                            db.session.flush()                            document_ids.append(document.id)                            documents.append(document)                            position += 1                        else:                            exist_document.pop(page['page_id'])                # delete not selected documents                if len(exist_document) > 0:                    clean_notion_document_task.delay(list(exist_document.values()), dataset.id)            db.session.commit()            # trigger async task            if document_ids:                document_indexing_task.delay(dataset.id, document_ids)            if duplicate_document_ids:                duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)        return documents, batch    @staticmethod    def check_documents_upload_quota(count: int, features: FeatureModel):        can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size        if count > can_upload_size:            raise ValueError(                f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')    @staticmethod    def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,                       document_language: str, data_source_info: dict, created_from: str, position: int,                       account: Account,                       name: str, batch: str):        document = Document(            tenant_id=dataset.tenant_id,            dataset_id=dataset.id,            position=position,            data_source_type=data_source_type,            data_source_info=json.dumps(data_source_info),            dataset_process_rule_id=process_rule_id,            batch=batch,            name=name,            created_from=created_from,            created_by=account.id,            doc_form=document_form,            doc_language=document_language        )        return document    @staticmethod    def get_tenant_documents_count():        documents_count = Document.query.filter(Document.completed_at.isnot(None),                                                Document.enabled == True,                                                Document.archived == False,                                                Document.tenant_id == current_user.current_tenant_id).count()        return documents_count    @staticmethod    def update_document_with_dataset_id(dataset: Dataset, document_data: dict,                                        account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,                                        created_from: str = 'web'):        DatasetService.check_dataset_model_setting(dataset)        document = DocumentService.get_document(dataset.id, document_data["original_document_id"])        if document.display_status != 'available':            raise ValueError("Document is not available")        # update document name        if document_data.get('name'):            document.name = document_data['name']        # save process rule        if document_data.get('process_rule'):            process_rule = document_data["process_rule"]            if process_rule["mode"] == "custom":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(process_rule["rules"]),                    created_by=account.id                )            elif process_rule["mode"] == "automatic":                dataset_process_rule = DatasetProcessRule(                    dataset_id=dataset.id,                    mode=process_rule["mode"],                    rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),                    created_by=account.id                )            db.session.add(dataset_process_rule)            db.session.commit()            document.dataset_process_rule_id = dataset_process_rule.id        # update document data source        if document_data.get('data_source'):            file_name = ''            data_source_info = {}            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                for file_id in upload_file_list:                    file = db.session.query(UploadFile).filter(                        UploadFile.tenant_id == dataset.tenant_id,                        UploadFile.id == file_id                    ).first()                    # raise error if file not found                    if not file:                        raise FileNotExistsError()                    file_name = file.name                    data_source_info = {                        "upload_file_id": file_id,                    }            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    workspace_id = notion_info['workspace_id']                    data_source_binding = DataSourceBinding.query.filter(                        db.and_(                            DataSourceBinding.tenant_id == current_user.current_tenant_id,                            DataSourceBinding.provider == 'notion',                            DataSourceBinding.disabled == False,                            DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'                        )                    ).first()                    if not data_source_binding:                        raise ValueError('Data source binding not found.')                    for page in notion_info['pages']:                        data_source_info = {                            "notion_workspace_id": workspace_id,                            "notion_page_id": page['page_id'],                            "notion_page_icon": page['page_icon'],                            "type": page['type']                        }            document.data_source_type = document_data["data_source"]["type"]            document.data_source_info = json.dumps(data_source_info)            document.name = file_name        # update document to be waiting        document.indexing_status = 'waiting'        document.completed_at = None        document.processing_started_at = None        document.parsing_completed_at = None        document.cleaning_completed_at = None        document.splitting_completed_at = None        document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)        document.created_from = created_from        document.doc_form = document_data['doc_form']        db.session.add(document)        db.session.commit()        # update document segment        update_params = {            DocumentSegment.status: 're_segment'        }        DocumentSegment.query.filter_by(document_id=document.id).update(update_params)        db.session.commit()        # trigger async task        document_indexing_update_task.delay(document.dataset_id, document.id)        return document    @staticmethod    def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):        features = FeatureService.get_features(current_user.current_tenant_id)        if features.billing.enabled:            count = 0            if document_data["data_source"]["type"] == "upload_file":                upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']                count = len(upload_file_list)            elif document_data["data_source"]["type"] == "notion_import":                notion_info_list = document_data["data_source"]['info_list']['notion_info_list']                for notion_info in notion_info_list:                    count = count + len(notion_info['pages'])            batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])            if count > batch_upload_limit:                raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")            DocumentService.check_documents_upload_quota(count, features)        embedding_model = None        dataset_collection_binding_id = None        retrieval_model = None        if document_data['indexing_technique'] == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_default_model_instance(                tenant_id=current_user.current_tenant_id,                model_type=ModelType.TEXT_EMBEDDING            )            dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(                embedding_model.provider,                embedding_model.model            )            dataset_collection_binding_id = dataset_collection_binding.id            if document_data.get('retrieval_model'):                retrieval_model = document_data['retrieval_model']            else:                default_retrieval_model = {                    'search_method': 'semantic_search',                    'reranking_enable': False,                    'reranking_model': {                        'reranking_provider_name': '',                        'reranking_model_name': ''                    },                    'top_k': 2,                    'score_threshold_enabled': False                }                retrieval_model = default_retrieval_model        # save dataset        dataset = Dataset(            tenant_id=tenant_id,            name='',            data_source_type=document_data["data_source"]["type"],            indexing_technique=document_data["indexing_technique"],            created_by=account.id,            embedding_model=embedding_model.model if embedding_model else None,            embedding_model_provider=embedding_model.provider if embedding_model else None,            collection_binding_id=dataset_collection_binding_id,            retrieval_model=retrieval_model        )        db.session.add(dataset)        db.session.flush()        documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)        cut_length = 18        cut_name = documents[0].name[:cut_length]        dataset.name = cut_name + '...'        dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name        db.session.commit()        return dataset, documents, batch    @classmethod    def document_create_args_validate(cls, args: dict):        if 'original_document_id' not in args or not args['original_document_id']:            DocumentService.data_source_args_validate(args)            DocumentService.process_rule_args_validate(args)        else:            if ('data_source' not in args and not args['data_source']) \                    and ('process_rule' not in args and not args['process_rule']):                raise ValueError("Data source or Process rule is required")            else:                if args.get('data_source'):                    DocumentService.data_source_args_validate(args)                if args.get('process_rule'):                    DocumentService.process_rule_args_validate(args)    @classmethod    def data_source_args_validate(cls, args: dict):        if 'data_source' not in args or not args['data_source']:            raise ValueError("Data source is required")        if not isinstance(args['data_source'], dict):            raise ValueError("Data source is invalid")        if 'type' not in args['data_source'] or not args['data_source']['type']:            raise ValueError("Data source type is required")        if args['data_source']['type'] not in Document.DATA_SOURCES:            raise ValueError("Data source type is invalid")        if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:            raise ValueError("Data source info is required")        if args['data_source']['type'] == 'upload_file':            if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'file_info_list']:                raise ValueError("File source info is required")        if args['data_source']['type'] == 'notion_import':            if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][                'notion_info_list']:                raise ValueError("Notion source info is required")    @classmethod    def process_rule_args_validate(cls, args: dict):        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")    @classmethod    def estimate_args_validate(cls, args: dict):        if 'info_list' not in args or not args['info_list']:            raise ValueError("Data source info is required")        if not isinstance(args['info_list'], dict):            raise ValueError("Data info is invalid")        if 'process_rule' not in args or not args['process_rule']:            raise ValueError("Process rule is required")        if not isinstance(args['process_rule'], dict):            raise ValueError("Process rule is invalid")        if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:            raise ValueError("Process rule mode is required")        if args['process_rule']['mode'] not in DatasetProcessRule.MODES:            raise ValueError("Process rule mode is invalid")        if args['process_rule']['mode'] == 'automatic':            args['process_rule']['rules'] = {}        else:            if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:                raise ValueError("Process rule rules is required")            if not isinstance(args['process_rule']['rules'], dict):                raise ValueError("Process rule rules is invalid")            if 'pre_processing_rules' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['pre_processing_rules'] is None:                raise ValueError("Process rule pre_processing_rules is required")            if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):                raise ValueError("Process rule pre_processing_rules is invalid")            unique_pre_processing_rule_dicts = {}            for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:                if 'id' not in pre_processing_rule or not pre_processing_rule['id']:                    raise ValueError("Process rule pre_processing_rules id is required")                if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:                    raise ValueError("Process rule pre_processing_rules id is invalid")                if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:                    raise ValueError("Process rule pre_processing_rules enabled is required")                if not isinstance(pre_processing_rule['enabled'], bool):                    raise ValueError("Process rule pre_processing_rules enabled is invalid")                unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule            args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())            if 'segmentation' not in args['process_rule']['rules'] \                    or args['process_rule']['rules']['segmentation'] is None:                raise ValueError("Process rule segmentation is required")            if not isinstance(args['process_rule']['rules']['segmentation'], dict):                raise ValueError("Process rule segmentation is invalid")            if 'separator' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['separator']:                raise ValueError("Process rule segmentation separator is required")            if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):                raise ValueError("Process rule segmentation separator is invalid")            if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \                    or not args['process_rule']['rules']['segmentation']['max_tokens']:                raise ValueError("Process rule segmentation max_tokens is required")            if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):                raise ValueError("Process rule segmentation max_tokens is invalid")class SegmentService:    @classmethod    def segment_create_args_validate(cls, args: dict, document: Document):        if document.doc_form == 'qa_model':            if 'answer' not in args or not args['answer']:                raise ValueError("Answer is required")            if not args['answer'].strip():                raise ValueError("Answer is empty")        if 'content' not in args or not args['content'] or not args['content'].strip():            raise ValueError("Content is empty")    @classmethod    def create_segment(cls, args: dict, document: Document, dataset: Dataset):        content = args['content']        doc_id = str(uuid.uuid4())        segment_hash = helper.generate_text_hash(content)        tokens = 0        if dataset.indexing_technique == 'high_quality':            model_manager = ModelManager()            embedding_model = model_manager.get_model_instance(                tenant_id=current_user.current_tenant_id,                provider=dataset.embedding_model_provider,                model_type=ModelType.TEXT_EMBEDDING,                model=dataset.embedding_model            )            # calc embedding use tokens            model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)            tokens = model_type_instance.get_num_tokens(                model=embedding_model.model,                credentials=embedding_model.credentials,                texts=[content]            )        lock_name = 'add_segment_lock_document_id_{}'.format(document.id)        with redis_client.lock(lock_name, timeout=600):            max_position = db.session.query(func.max(DocumentSegment.position)).filter(                DocumentSegment.document_id == document.id            ).scalar()            segment_document = DocumentSegment(                tenant_id=current_user.current_tenant_id,                dataset_id=document.dataset_id,                document_id=document.id,                index_node_id=doc_id,                index_node_hash=segment_hash,                position=max_position + 1 if max_position else 1,                content=content,                word_count=len(content),                tokens=tokens,                status='completed',                indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                created_by=current_user.id            )            if document.doc_form == 'qa_model':                segment_document.answer = args['answer']            db.session.add(segment_document)            db.session.commit()            # save vector index            try:                VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)            except Exception as e:                logging.exception("create segment index failed")                segment_document.enabled = False                segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment_document.status = 'error'                segment_document.error = str(e)                db.session.commit()            segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()            return segment    @classmethod    def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):        lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)        with redis_client.lock(lock_name, timeout=600):            embedding_model = None            if dataset.indexing_technique == 'high_quality':                model_manager = ModelManager()                embedding_model = model_manager.get_model_instance(                    tenant_id=current_user.current_tenant_id,                    provider=dataset.embedding_model_provider,                    model_type=ModelType.TEXT_EMBEDDING,                    model=dataset.embedding_model                )            max_position = db.session.query(func.max(DocumentSegment.position)).filter(                DocumentSegment.document_id == document.id            ).scalar()            pre_segment_data_list = []            segment_data_list = []            keywords_list = []            for segment_item in segments:                content = segment_item['content']                doc_id = str(uuid.uuid4())                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == 'high_quality' and embedding_model:                    # calc embedding use tokens                    model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)                    tokens = model_type_instance.get_num_tokens(                        model=embedding_model.model,                        credentials=embedding_model.credentials,                        texts=[content]                    )                segment_document = DocumentSegment(                    tenant_id=current_user.current_tenant_id,                    dataset_id=document.dataset_id,                    document_id=document.id,                    index_node_id=doc_id,                    index_node_hash=segment_hash,                    position=max_position + 1 if max_position else 1,                    content=content,                    word_count=len(content),                    tokens=tokens,                    status='completed',                    indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),                    created_by=current_user.id                )                if document.doc_form == 'qa_model':                    segment_document.answer = segment_item['answer']                db.session.add(segment_document)                segment_data_list.append(segment_document)                pre_segment_data_list.append(segment_document)                keywords_list.append(segment_item['keywords'])            try:                # save vector index                VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)            except Exception as e:                logging.exception("create segment index failed")                for segment_document in segment_data_list:                    segment_document.enabled = False                    segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                    segment_document.status = 'error'                    segment_document.error = str(e)            db.session.commit()            return segment_data_list    @classmethod    def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is indexing, please try again later")        if 'enabled' in args and args['enabled'] is not None:            action = args['enabled']            if segment.enabled != action:                if not action:                    segment.enabled = action                    segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                    segment.disabled_by = current_user.id                    db.session.add(segment)                    db.session.commit()                    # Set cache to prevent indexing the same segment multiple times                    redis_client.setex(indexing_cache_key, 600, 1)                    disable_segment_from_index_task.delay(segment.id)                    return segment        if not segment.enabled:            if 'enabled' in args and args['enabled'] is not None:                if not args['enabled']:                    raise ValueError("Can't update disabled segment")            else:                raise ValueError("Can't update disabled segment")        try:            content = args['content']            if segment.content == content:                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                if args.get('keywords'):                    segment.keywords = args['keywords']                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                db.session.add(segment)                db.session.commit()                # update segment index task                if args['keywords']:                    keyword = Keyword(dataset)                    keyword.delete_by_ids([segment.index_node_id])                    document = RAGDocument(                        page_content=segment.content,                        metadata={                            "doc_id": segment.index_node_id,                            "doc_hash": segment.index_node_hash,                            "document_id": segment.document_id,                            "dataset_id": segment.dataset_id,                        }                    )                    keyword.add_texts([document], keywords_list=[args['keywords']])            else:                segment_hash = helper.generate_text_hash(content)                tokens = 0                if dataset.indexing_technique == 'high_quality':                    model_manager = ModelManager()                    embedding_model = model_manager.get_model_instance(                        tenant_id=current_user.current_tenant_id,                        provider=dataset.embedding_model_provider,                        model_type=ModelType.TEXT_EMBEDDING,                        model=dataset.embedding_model                    )                    # calc embedding use tokens                    model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)                    tokens = model_type_instance.get_num_tokens(                        model=embedding_model.model,                        credentials=embedding_model.credentials,                        texts=[content]                    )                segment.content = content                segment.index_node_hash = segment_hash                segment.word_count = len(content)                segment.tokens = tokens                segment.status = 'completed'                segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.updated_by = current_user.id                segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)                segment.enabled = True                segment.disabled_at = None                segment.disabled_by = None                if document.doc_form == 'qa_model':                    segment.answer = args['answer']                db.session.add(segment)                db.session.commit()                # update segment vector index                VectorService.update_segment_vector(args['keywords'], segment, dataset)        except Exception as e:            logging.exception("update segment index failed")            segment.enabled = False            segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)            segment.status = 'error'            segment.error = str(e)            db.session.commit()        segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()        return segment    @classmethod    def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):        indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)        cache_result = redis_client.get(indexing_cache_key)        if cache_result is not None:            raise ValueError("Segment is deleting.")        # enabled segment need to delete index        if segment.enabled:            # send delete segment index task            redis_client.setex(indexing_cache_key, 600, 1)            delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)        db.session.delete(segment)        db.session.commit()class DatasetCollectionBindingService:    @classmethod    def get_dataset_collection_binding(cls, provider_name: str, model_name: str,                                       collection_type: str = 'dataset') -> DatasetCollectionBinding:        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \            filter(DatasetCollectionBinding.provider_name == provider_name,                   DatasetCollectionBinding.model_name == model_name,                   DatasetCollectionBinding.type == collection_type). \            order_by(DatasetCollectionBinding.created_at). \            first()        if not dataset_collection_binding:            dataset_collection_binding = DatasetCollectionBinding(                provider_name=provider_name,                model_name=model_name,                collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),                type=collection_type            )            db.session.add(dataset_collection_binding)            db.session.commit()        return dataset_collection_binding    @classmethod    def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,                                                      collection_type: str = 'dataset') -> DatasetCollectionBinding:        dataset_collection_binding = db.session.query(DatasetCollectionBinding). \            filter(DatasetCollectionBinding.id == collection_binding_id,                   DatasetCollectionBinding.type == collection_type). \            order_by(DatasetCollectionBinding.created_at). \            first()        return dataset_collection_binding
 |