fixed_text_splitter.py 4.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114
  1. """Functionality for splitting text."""
  2. from __future__ import annotations
  3. from typing import Any, Optional, cast
  4. from core.model_manager import ModelInstance
  5. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  6. from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
  7. from core.splitter.text_splitter import (
  8. TS,
  9. Collection,
  10. Literal,
  11. RecursiveCharacterTextSplitter,
  12. Set,
  13. TokenTextSplitter,
  14. Union,
  15. )
  16. class EnhanceRecursiveCharacterTextSplitter(RecursiveCharacterTextSplitter):
  17. """
  18. This class is used to implement from_gpt2_encoder, to prevent using of tiktoken
  19. """
  20. @classmethod
  21. def from_encoder(
  22. cls: type[TS],
  23. embedding_model_instance: Optional[ModelInstance],
  24. allowed_special: Union[Literal[all], Set[str]] = set(),
  25. disallowed_special: Union[Literal[all], Collection[str]] = "all",
  26. **kwargs: Any,
  27. ):
  28. def _token_encoder(text: str) -> int:
  29. if not text:
  30. return 0
  31. if embedding_model_instance:
  32. embedding_model_type_instance = embedding_model_instance.model_type_instance
  33. embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
  34. return embedding_model_type_instance.get_num_tokens(
  35. model=embedding_model_instance.model,
  36. credentials=embedding_model_instance.credentials,
  37. texts=[text]
  38. )
  39. else:
  40. return GPT2Tokenizer.get_num_tokens(text)
  41. if issubclass(cls, TokenTextSplitter):
  42. extra_kwargs = {
  43. "model_name": embedding_model_instance.model if embedding_model_instance else 'gpt2',
  44. "allowed_special": allowed_special,
  45. "disallowed_special": disallowed_special,
  46. }
  47. kwargs = {**kwargs, **extra_kwargs}
  48. return cls(length_function=_token_encoder, **kwargs)
  49. class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter):
  50. def __init__(self, fixed_separator: str = "\n\n", separators: Optional[list[str]] = None, **kwargs: Any):
  51. """Create a new TextSplitter."""
  52. super().__init__(**kwargs)
  53. self._fixed_separator = fixed_separator
  54. self._separators = separators or ["\n\n", "\n", " ", ""]
  55. def split_text(self, text: str) -> list[str]:
  56. """Split incoming text and return chunks."""
  57. if self._fixed_separator:
  58. chunks = text.split(self._fixed_separator)
  59. else:
  60. chunks = list(text)
  61. final_chunks = []
  62. for chunk in chunks:
  63. if self._length_function(chunk) > self._chunk_size:
  64. final_chunks.extend(self.recursive_split_text(chunk))
  65. else:
  66. final_chunks.append(chunk)
  67. return final_chunks
  68. def recursive_split_text(self, text: str) -> list[str]:
  69. """Split incoming text and return chunks."""
  70. final_chunks = []
  71. # Get appropriate separator to use
  72. separator = self._separators[-1]
  73. for _s in self._separators:
  74. if _s == "":
  75. separator = _s
  76. break
  77. if _s in text:
  78. separator = _s
  79. break
  80. # Now that we have the separator, split the text
  81. if separator:
  82. splits = text.split(separator)
  83. else:
  84. splits = list(text)
  85. # Now go merging things, recursively splitting longer texts.
  86. _good_splits = []
  87. for s in splits:
  88. if self._length_function(s) < self._chunk_size:
  89. _good_splits.append(s)
  90. else:
  91. if _good_splits:
  92. merged_text = self._merge_splits(_good_splits, separator)
  93. final_chunks.extend(merged_text)
  94. _good_splits = []
  95. other_info = self.recursive_split_text(s)
  96. final_chunks.extend(other_info)
  97. if _good_splits:
  98. merged_text = self._merge_splits(_good_splits, separator)
  99. final_chunks.extend(merged_text)
  100. return final_chunks