123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- """Functionality for splitting text."""
- from __future__ import annotations
- from typing import Any, Optional, cast
- from core.model_manager import ModelInstance
- from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
- from core.model_runtime.model_providers.__base.tokenizers.gpt2_tokenzier import GPT2Tokenizer
- from core.splitter.text_splitter import (
- TS,
- Collection,
- Literal,
- RecursiveCharacterTextSplitter,
- Set,
- TokenTextSplitter,
- Union,
- )
- class EnhanceRecursiveCharacterTextSplitter(RecursiveCharacterTextSplitter):
- """
- This class is used to implement from_gpt2_encoder, to prevent using of tiktoken
- """
- @classmethod
- def from_encoder(
- cls: type[TS],
- embedding_model_instance: Optional[ModelInstance],
- allowed_special: Union[Literal[all], Set[str]] = set(),
- disallowed_special: Union[Literal[all], Collection[str]] = "all",
- **kwargs: Any,
- ):
- def _token_encoder(text: str) -> int:
- if not text:
- return 0
- if embedding_model_instance:
- embedding_model_type_instance = embedding_model_instance.model_type_instance
- embedding_model_type_instance = cast(TextEmbeddingModel, embedding_model_type_instance)
- return embedding_model_type_instance.get_num_tokens(
- model=embedding_model_instance.model,
- credentials=embedding_model_instance.credentials,
- texts=[text]
- )
- else:
- return GPT2Tokenizer.get_num_tokens(text)
- if issubclass(cls, TokenTextSplitter):
- extra_kwargs = {
- "model_name": embedding_model_instance.model if embedding_model_instance else 'gpt2',
- "allowed_special": allowed_special,
- "disallowed_special": disallowed_special,
- }
- kwargs = {**kwargs, **extra_kwargs}
- return cls(length_function=_token_encoder, **kwargs)
- class FixedRecursiveCharacterTextSplitter(EnhanceRecursiveCharacterTextSplitter):
- def __init__(self, fixed_separator: str = "\n\n", separators: Optional[list[str]] = None, **kwargs: Any):
- """Create a new TextSplitter."""
- super().__init__(**kwargs)
- self._fixed_separator = fixed_separator
- self._separators = separators or ["\n\n", "\n", " ", ""]
- def split_text(self, text: str) -> list[str]:
- """Split incoming text and return chunks."""
- if self._fixed_separator:
- chunks = text.split(self._fixed_separator)
- else:
- chunks = list(text)
- final_chunks = []
- for chunk in chunks:
- if self._length_function(chunk) > self._chunk_size:
- final_chunks.extend(self.recursive_split_text(chunk))
- else:
- final_chunks.append(chunk)
- return final_chunks
- def recursive_split_text(self, text: str) -> list[str]:
- """Split incoming text and return chunks."""
- final_chunks = []
- # Get appropriate separator to use
- separator = self._separators[-1]
- for _s in self._separators:
- if _s == "":
- separator = _s
- break
- if _s in text:
- separator = _s
- break
- # Now that we have the separator, split the text
- if separator:
- splits = text.split(separator)
- else:
- splits = list(text)
- # Now go merging things, recursively splitting longer texts.
- _good_splits = []
- for s in splits:
- if self._length_function(s) < self._chunk_size:
- _good_splits.append(s)
- else:
- if _good_splits:
- merged_text = self._merge_splits(_good_splits, separator)
- final_chunks.extend(merged_text)
- _good_splits = []
- other_info = self.recursive_split_text(s)
- final_chunks.extend(other_info)
- if _good_splits:
- merged_text = self._merge_splits(_good_splits, separator)
- final_chunks.extend(merged_text)
- return final_chunks
|