123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133 |
- import json
- import logging
- import sys
- from typing import Optional
- from core.model_runtime.callbacks.base_callback import Callback
- from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
- from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
- from core.model_runtime.model_providers.__base.ai_model import AIModel
- logger = logging.getLogger(__name__)
- class LoggingCallback(Callback):
- def on_before_invoke(self, llm_instance: AIModel, model: str, credentials: dict,
- prompt_messages: list[PromptMessage], model_parameters: dict,
- tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
- stream: bool = True, user: Optional[str] = None) -> None:
- """
- Before invoke callback
- :param llm_instance: LLM instance
- :param model: model name
- :param credentials: model credentials
- :param prompt_messages: prompt messages
- :param model_parameters: model parameters
- :param tools: tools for tool calling
- :param stop: stop words
- :param stream: is stream response
- :param user: unique user id
- """
- self.print_text("\n[on_llm_before_invoke]\n", color='blue')
- self.print_text(f"Model: {model}\n", color='blue')
- self.print_text("Parameters:\n", color='blue')
- for key, value in model_parameters.items():
- self.print_text(f"\t{key}: {value}\n", color='blue')
- if stop:
- self.print_text(f"\tstop: {stop}\n", color='blue')
- if tools:
- self.print_text("\tTools:\n", color='blue')
- for tool in tools:
- self.print_text(f"\t\t{tool.name}\n", color='blue')
- self.print_text(f"Stream: {stream}\n", color='blue')
- if user:
- self.print_text(f"User: {user}\n", color='blue')
- self.print_text("Prompt messages:\n", color='blue')
- for prompt_message in prompt_messages:
- if prompt_message.name:
- self.print_text(f"\tname: {prompt_message.name}\n", color='blue')
- self.print_text(f"\trole: {prompt_message.role.value}\n", color='blue')
- self.print_text(f"\tcontent: {prompt_message.content}\n", color='blue')
- if stream:
- self.print_text("\n[on_llm_new_chunk]")
- def on_new_chunk(self, llm_instance: AIModel, chunk: LLMResultChunk, model: str, credentials: dict,
- prompt_messages: list[PromptMessage], model_parameters: dict,
- tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
- stream: bool = True, user: Optional[str] = None):
- """
- On new chunk callback
- :param llm_instance: LLM instance
- :param chunk: chunk
- :param model: model name
- :param credentials: model credentials
- :param prompt_messages: prompt messages
- :param model_parameters: model parameters
- :param tools: tools for tool calling
- :param stop: stop words
- :param stream: is stream response
- :param user: unique user id
- """
- sys.stdout.write(chunk.delta.message.content)
- sys.stdout.flush()
- def on_after_invoke(self, llm_instance: AIModel, result: LLMResult, model: str, credentials: dict,
- prompt_messages: list[PromptMessage], model_parameters: dict,
- tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
- stream: bool = True, user: Optional[str] = None) -> None:
- """
- After invoke callback
- :param llm_instance: LLM instance
- :param result: result
- :param model: model name
- :param credentials: model credentials
- :param prompt_messages: prompt messages
- :param model_parameters: model parameters
- :param tools: tools for tool calling
- :param stop: stop words
- :param stream: is stream response
- :param user: unique user id
- """
- self.print_text("\n[on_llm_after_invoke]\n", color='yellow')
- self.print_text(f"Content: {result.message.content}\n", color='yellow')
- if result.message.tool_calls:
- self.print_text("Tool calls:\n", color='yellow')
- for tool_call in result.message.tool_calls:
- self.print_text(f"\t{tool_call.id}\n", color='yellow')
- self.print_text(f"\t{tool_call.function.name}\n", color='yellow')
- self.print_text(f"\t{json.dumps(tool_call.function.arguments)}\n", color='yellow')
- self.print_text(f"Model: {result.model}\n", color='yellow')
- self.print_text(f"Usage: {result.usage}\n", color='yellow')
- self.print_text(f"System Fingerprint: {result.system_fingerprint}\n", color='yellow')
- def on_invoke_error(self, llm_instance: AIModel, ex: Exception, model: str, credentials: dict,
- prompt_messages: list[PromptMessage], model_parameters: dict,
- tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
- stream: bool = True, user: Optional[str] = None) -> None:
- """
- Invoke error callback
- :param llm_instance: LLM instance
- :param ex: exception
- :param model: model name
- :param credentials: model credentials
- :param prompt_messages: prompt messages
- :param model_parameters: model parameters
- :param tools: tools for tool calling
- :param stop: stop words
- :param stream: is stream response
- :param user: unique user id
- """
- self.print_text("\n[on_llm_invoke_error]\n", color='red')
- logger.exception(ex)
|