Nam Vu 6991a243aa chore: correct _tts_invoke_streaming max length (#7423) 1 gadu atpakaļ
..
configs 3d27d15f00 chore(*): Bump version 0.7.1 (#7389) 1 gadu atpakaļ
constants 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 gadu atpakaļ
contexts 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 gadu atpakaļ
controllers fbf31b5d52 feat: custom app icon (#7196) 1 gadu atpakaļ
core 6991a243aa chore: correct _tts_invoke_streaming max length (#7423) 1 gadu atpakaļ
docker f656e1bae2 fix: ensure db migration in docker entry script running with `upgrade-db` command for proper locking (#6946) 1 gadu atpakaļ
events fbf31b5d52 feat: custom app icon (#7196) 1 gadu atpakaļ
extensions 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 gadu atpakaļ
fields fbf31b5d52 feat: custom app icon (#7196) 1 gadu atpakaļ
libs fbf31b5d52 feat: custom app icon (#7196) 1 gadu atpakaļ
migrations fbf31b5d52 feat: custom app icon (#7196) 1 gadu atpakaļ
models bbb6fcc4f0 chore: update ruff from 0.5.x to 0.6.x (#7384) 1 gadu atpakaļ
schedule 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 gadu atpakaļ
services fbf31b5d52 feat: custom app icon (#7196) 1 gadu atpakaļ
tasks dbc1ae45de chore: update docstrings (#7343) 1 gadu atpakaļ
templates 00b4cc3cd4 feat: implement forgot password feature (#5534) 1 gadu atpakaļ
tests 1f944c6eeb feat(api): support wenxin bge-large and tao embedding model. (#7393) 1 gadu atpakaļ
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 1 gadu atpakaļ
.env.example c7df6783df Revert "feat: support pinning, including, and excluding for Model Providers and Tools" (#7324) 1 gadu atpakaļ
Dockerfile 169cde6c3c add nltk punkt resource (#7063) 1 gadu atpakaļ
README.md fb5e3662d5 Chores: add missing profile for middleware docker compose cmd and fix ssrf-proxy doc link (#6372) 1 gadu atpakaļ
app.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 gadu atpakaļ
commands.py 3571292fbf chore(api): Introduce Ruff Formatter. (#7291) 1 gadu atpakaļ
poetry.lock 68dc6d5bc3 chore: rearrange api python dependencies (#7391) 1 gadu atpakaļ
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 1 gadu atpakaļ
pyproject.toml 68dc6d5bc3 chore: rearrange api python dependencies (#7391) 1 gadu atpakaļ

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to debug local async processing, please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

The started celery app handles the async tasks, e.g. dataset importing and documents indexing.

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh