123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466 |
- import datetime
- import json
- import re
- import tempfile
- import time
- from pathlib import Path
- from typing import Optional, List
- from langchain.text_splitter import RecursiveCharacterTextSplitter
- from llama_index import SimpleDirectoryReader
- from llama_index.data_structs import Node
- from llama_index.data_structs.node_v2 import DocumentRelationship
- from llama_index.node_parser import SimpleNodeParser, NodeParser
- from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
- from llama_index.readers.file.markdown_parser import MarkdownParser
- from core.docstore.dataset_docstore import DatesetDocumentStore
- from core.index.keyword_table_index import KeywordTableIndex
- from core.index.readers.html_parser import HTMLParser
- from core.index.readers.pdf_parser import PDFParser
- from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
- from core.index.vector_index import VectorIndex
- from core.llm.token_calculator import TokenCalculator
- from extensions.ext_database import db
- from extensions.ext_redis import redis_client
- from extensions.ext_storage import storage
- from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
- from models.model import UploadFile
- class IndexingRunner:
- def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
- self.storage = storage
- self.embedding_model_name = embedding_model_name
- def run(self, document: Document):
- """Run the indexing process."""
- # get dataset
- dataset = Dataset.query.filter_by(
- id=document.dataset_id
- ).first()
- if not dataset:
- raise ValueError("no dataset found")
- # load file
- text_docs = self._load_data(document)
- # get the process rule
- processing_rule = db.session.query(DatasetProcessRule). \
- filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
- first()
- # get node parser for splitting
- node_parser = self._get_node_parser(processing_rule)
- # split to nodes
- nodes = self._step_split(
- text_docs=text_docs,
- node_parser=node_parser,
- dataset=dataset,
- document=document,
- processing_rule=processing_rule
- )
- # build index
- self._build_index(
- dataset=dataset,
- document=document,
- nodes=nodes
- )
- def run_in_splitting_status(self, document: Document):
- """Run the indexing process when the index_status is splitting."""
- # get dataset
- dataset = Dataset.query.filter_by(
- id=document.dataset_id
- ).first()
- if not dataset:
- raise ValueError("no dataset found")
- # get exist document_segment list and delete
- document_segments = DocumentSegment.query.filter_by(
- dataset_id=dataset.id,
- document_id=document.id
- ).all()
- db.session.delete(document_segments)
- db.session.commit()
- # load file
- text_docs = self._load_data(document)
- # get the process rule
- processing_rule = db.session.query(DatasetProcessRule). \
- filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
- first()
- # get node parser for splitting
- node_parser = self._get_node_parser(processing_rule)
- # split to nodes
- nodes = self._step_split(
- text_docs=text_docs,
- node_parser=node_parser,
- dataset=dataset,
- document=document,
- processing_rule=processing_rule
- )
- # build index
- self._build_index(
- dataset=dataset,
- document=document,
- nodes=nodes
- )
- def run_in_indexing_status(self, document: Document):
- """Run the indexing process when the index_status is indexing."""
- # get dataset
- dataset = Dataset.query.filter_by(
- id=document.dataset_id
- ).first()
- if not dataset:
- raise ValueError("no dataset found")
- # get exist document_segment list and delete
- document_segments = DocumentSegment.query.filter_by(
- dataset_id=dataset.id,
- document_id=document.id
- ).all()
- nodes = []
- if document_segments:
- for document_segment in document_segments:
- # transform segment to node
- if document_segment.status != "completed":
- relationships = {
- DocumentRelationship.SOURCE: document_segment.document_id,
- }
- previous_segment = document_segment.previous_segment
- if previous_segment:
- relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
- next_segment = document_segment.next_segment
- if next_segment:
- relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
- node = Node(
- doc_id=document_segment.index_node_id,
- doc_hash=document_segment.index_node_hash,
- text=document_segment.content,
- extra_info=None,
- node_info=None,
- relationships=relationships
- )
- nodes.append(node)
- # build index
- self._build_index(
- dataset=dataset,
- document=document,
- nodes=nodes
- )
- def indexing_estimate(self, file_detail: UploadFile, tmp_processing_rule: dict) -> dict:
- """
- Estimate the indexing for the document.
- """
- # load data from file
- text_docs = self._load_data_from_file(file_detail)
- processing_rule = DatasetProcessRule(
- mode=tmp_processing_rule["mode"],
- rules=json.dumps(tmp_processing_rule["rules"])
- )
- # get node parser for splitting
- node_parser = self._get_node_parser(processing_rule)
- # split to nodes
- nodes = self._split_to_nodes(
- text_docs=text_docs,
- node_parser=node_parser,
- processing_rule=processing_rule
- )
- tokens = 0
- preview_texts = []
- for node in nodes:
- if len(preview_texts) < 5:
- preview_texts.append(node.get_text())
- tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
- return {
- "total_segments": len(nodes),
- "tokens": tokens,
- "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
- "currency": TokenCalculator.get_currency(self.embedding_model_name),
- "preview": preview_texts
- }
- def _load_data(self, document: Document) -> List[Document]:
- # load file
- if document.data_source_type != "upload_file":
- return []
- data_source_info = document.data_source_info_dict
- if not data_source_info or 'upload_file_id' not in data_source_info:
- raise ValueError("no upload file found")
- file_detail = db.session.query(UploadFile). \
- filter(UploadFile.id == data_source_info['upload_file_id']). \
- one_or_none()
- text_docs = self._load_data_from_file(file_detail)
- # update document status to splitting
- self._update_document_index_status(
- document_id=document.id,
- after_indexing_status="splitting",
- extra_update_params={
- Document.file_id: file_detail.id,
- Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
- Document.parsing_completed_at: datetime.datetime.utcnow()
- }
- )
- # replace doc id to document model id
- for text_doc in text_docs:
- # remove invalid symbol
- text_doc.text = self.filter_string(text_doc.get_text())
- text_doc.doc_id = document.id
- return text_docs
- def filter_string(self, text):
- pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
- return pattern.sub('', text)
- def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
- with tempfile.TemporaryDirectory() as temp_dir:
- suffix = Path(upload_file.key).suffix
- filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
- self.storage.download(upload_file.key, filepath)
- file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
- file_extractor[".markdown"] = MarkdownParser()
- file_extractor[".html"] = HTMLParser()
- file_extractor[".htm"] = HTMLParser()
- file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
- loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
- text_docs = loader.load_data()
- return text_docs
- def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
- """
- Get the NodeParser object according to the processing rule.
- """
- if processing_rule.mode == "custom":
- # The user-defined segmentation rule
- rules = json.loads(processing_rule.rules)
- segmentation = rules["segmentation"]
- if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
- raise ValueError("Custom segment length should be between 50 and 1000.")
- separator = segmentation["separator"]
- if separator:
- separator = separator.replace('\\n', '\n')
- character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
- chunk_size=segmentation["max_tokens"],
- chunk_overlap=0,
- fixed_separator=separator,
- separators=["\n\n", "。", ".", " ", ""]
- )
- else:
- # Automatic segmentation
- character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
- chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
- chunk_overlap=0,
- separators=["\n\n", "。", ".", " ", ""]
- )
- return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
- def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
- dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
- """
- Split the text documents into nodes and save them to the document segment.
- """
- nodes = self._split_to_nodes(
- text_docs=text_docs,
- node_parser=node_parser,
- processing_rule=processing_rule
- )
- # save node to document segment
- doc_store = DatesetDocumentStore(
- dataset=dataset,
- user_id=document.created_by,
- embedding_model_name=self.embedding_model_name,
- document_id=document.id
- )
- doc_store.add_documents(nodes)
- # update document status to indexing
- cur_time = datetime.datetime.utcnow()
- self._update_document_index_status(
- document_id=document.id,
- after_indexing_status="indexing",
- extra_update_params={
- Document.cleaning_completed_at: cur_time,
- Document.splitting_completed_at: cur_time,
- }
- )
- # update segment status to indexing
- self._update_segments_by_document(
- document_id=document.id,
- update_params={
- DocumentSegment.status: "indexing",
- DocumentSegment.indexing_at: datetime.datetime.utcnow()
- }
- )
- return nodes
- def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
- processing_rule: DatasetProcessRule) -> List[Node]:
- """
- Split the text documents into nodes.
- """
- all_nodes = []
- for text_doc in text_docs:
- # document clean
- document_text = self._document_clean(text_doc.get_text(), processing_rule)
- text_doc.text = document_text
- # parse document to nodes
- nodes = node_parser.get_nodes_from_documents([text_doc])
- nodes = [node for node in nodes if node.text is not None and node.text.strip()]
- all_nodes.extend(nodes)
- return all_nodes
- def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
- """
- Clean the document text according to the processing rules.
- """
- if processing_rule.mode == "automatic":
- rules = DatasetProcessRule.AUTOMATIC_RULES
- else:
- rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
- if 'pre_processing_rules' in rules:
- pre_processing_rules = rules["pre_processing_rules"]
- for pre_processing_rule in pre_processing_rules:
- if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
- # Remove extra spaces
- pattern = r'\n{3,}'
- text = re.sub(pattern, '\n\n', text)
- pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
- text = re.sub(pattern, ' ', text)
- elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
- # Remove email
- pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
- text = re.sub(pattern, '', text)
- # Remove URL
- pattern = r'https?://[^\s]+'
- text = re.sub(pattern, '', text)
- return text
- def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
- """
- Build the index for the document.
- """
- vector_index = VectorIndex(dataset=dataset)
- keyword_table_index = KeywordTableIndex(dataset=dataset)
- # chunk nodes by chunk size
- indexing_start_at = time.perf_counter()
- tokens = 0
- chunk_size = 100
- for i in range(0, len(nodes), chunk_size):
- # check document is paused
- self._check_document_paused_status(document.id)
- chunk_nodes = nodes[i:i + chunk_size]
- tokens += sum(
- TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
- )
- # save vector index
- if dataset.indexing_technique == "high_quality":
- vector_index.add_nodes(chunk_nodes)
- # save keyword index
- keyword_table_index.add_nodes(chunk_nodes)
- node_ids = [node.doc_id for node in chunk_nodes]
- db.session.query(DocumentSegment).filter(
- DocumentSegment.document_id == document.id,
- DocumentSegment.index_node_id.in_(node_ids),
- DocumentSegment.status == "indexing"
- ).update({
- DocumentSegment.status: "completed",
- DocumentSegment.completed_at: datetime.datetime.utcnow()
- })
- db.session.commit()
- indexing_end_at = time.perf_counter()
- # update document status to completed
- self._update_document_index_status(
- document_id=document.id,
- after_indexing_status="completed",
- extra_update_params={
- Document.tokens: tokens,
- Document.completed_at: datetime.datetime.utcnow(),
- Document.indexing_latency: indexing_end_at - indexing_start_at,
- }
- )
- def _check_document_paused_status(self, document_id: str):
- indexing_cache_key = 'document_{}_is_paused'.format(document_id)
- result = redis_client.get(indexing_cache_key)
- if result:
- raise DocumentIsPausedException()
- def _update_document_index_status(self, document_id: str, after_indexing_status: str,
- extra_update_params: Optional[dict] = None) -> None:
- """
- Update the document indexing status.
- """
- count = Document.query.filter_by(id=document_id, is_paused=True).count()
- if count > 0:
- raise DocumentIsPausedException()
- update_params = {
- Document.indexing_status: after_indexing_status
- }
- if extra_update_params:
- update_params.update(extra_update_params)
- Document.query.filter_by(id=document_id).update(update_params)
- db.session.commit()
- def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
- """
- Update the document segment by document id.
- """
- DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
- db.session.commit()
- class DocumentIsPausedException(Exception):
- pass
|