indexing_runner.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466
  1. import datetime
  2. import json
  3. import re
  4. import tempfile
  5. import time
  6. from pathlib import Path
  7. from typing import Optional, List
  8. from langchain.text_splitter import RecursiveCharacterTextSplitter
  9. from llama_index import SimpleDirectoryReader
  10. from llama_index.data_structs import Node
  11. from llama_index.data_structs.node_v2 import DocumentRelationship
  12. from llama_index.node_parser import SimpleNodeParser, NodeParser
  13. from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
  14. from llama_index.readers.file.markdown_parser import MarkdownParser
  15. from core.docstore.dataset_docstore import DatesetDocumentStore
  16. from core.index.keyword_table_index import KeywordTableIndex
  17. from core.index.readers.html_parser import HTMLParser
  18. from core.index.readers.pdf_parser import PDFParser
  19. from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
  20. from core.index.vector_index import VectorIndex
  21. from core.llm.token_calculator import TokenCalculator
  22. from extensions.ext_database import db
  23. from extensions.ext_redis import redis_client
  24. from extensions.ext_storage import storage
  25. from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
  26. from models.model import UploadFile
  27. class IndexingRunner:
  28. def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
  29. self.storage = storage
  30. self.embedding_model_name = embedding_model_name
  31. def run(self, document: Document):
  32. """Run the indexing process."""
  33. # get dataset
  34. dataset = Dataset.query.filter_by(
  35. id=document.dataset_id
  36. ).first()
  37. if not dataset:
  38. raise ValueError("no dataset found")
  39. # load file
  40. text_docs = self._load_data(document)
  41. # get the process rule
  42. processing_rule = db.session.query(DatasetProcessRule). \
  43. filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
  44. first()
  45. # get node parser for splitting
  46. node_parser = self._get_node_parser(processing_rule)
  47. # split to nodes
  48. nodes = self._step_split(
  49. text_docs=text_docs,
  50. node_parser=node_parser,
  51. dataset=dataset,
  52. document=document,
  53. processing_rule=processing_rule
  54. )
  55. # build index
  56. self._build_index(
  57. dataset=dataset,
  58. document=document,
  59. nodes=nodes
  60. )
  61. def run_in_splitting_status(self, document: Document):
  62. """Run the indexing process when the index_status is splitting."""
  63. # get dataset
  64. dataset = Dataset.query.filter_by(
  65. id=document.dataset_id
  66. ).first()
  67. if not dataset:
  68. raise ValueError("no dataset found")
  69. # get exist document_segment list and delete
  70. document_segments = DocumentSegment.query.filter_by(
  71. dataset_id=dataset.id,
  72. document_id=document.id
  73. ).all()
  74. db.session.delete(document_segments)
  75. db.session.commit()
  76. # load file
  77. text_docs = self._load_data(document)
  78. # get the process rule
  79. processing_rule = db.session.query(DatasetProcessRule). \
  80. filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
  81. first()
  82. # get node parser for splitting
  83. node_parser = self._get_node_parser(processing_rule)
  84. # split to nodes
  85. nodes = self._step_split(
  86. text_docs=text_docs,
  87. node_parser=node_parser,
  88. dataset=dataset,
  89. document=document,
  90. processing_rule=processing_rule
  91. )
  92. # build index
  93. self._build_index(
  94. dataset=dataset,
  95. document=document,
  96. nodes=nodes
  97. )
  98. def run_in_indexing_status(self, document: Document):
  99. """Run the indexing process when the index_status is indexing."""
  100. # get dataset
  101. dataset = Dataset.query.filter_by(
  102. id=document.dataset_id
  103. ).first()
  104. if not dataset:
  105. raise ValueError("no dataset found")
  106. # get exist document_segment list and delete
  107. document_segments = DocumentSegment.query.filter_by(
  108. dataset_id=dataset.id,
  109. document_id=document.id
  110. ).all()
  111. nodes = []
  112. if document_segments:
  113. for document_segment in document_segments:
  114. # transform segment to node
  115. if document_segment.status != "completed":
  116. relationships = {
  117. DocumentRelationship.SOURCE: document_segment.document_id,
  118. }
  119. previous_segment = document_segment.previous_segment
  120. if previous_segment:
  121. relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
  122. next_segment = document_segment.next_segment
  123. if next_segment:
  124. relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
  125. node = Node(
  126. doc_id=document_segment.index_node_id,
  127. doc_hash=document_segment.index_node_hash,
  128. text=document_segment.content,
  129. extra_info=None,
  130. node_info=None,
  131. relationships=relationships
  132. )
  133. nodes.append(node)
  134. # build index
  135. self._build_index(
  136. dataset=dataset,
  137. document=document,
  138. nodes=nodes
  139. )
  140. def indexing_estimate(self, file_detail: UploadFile, tmp_processing_rule: dict) -> dict:
  141. """
  142. Estimate the indexing for the document.
  143. """
  144. # load data from file
  145. text_docs = self._load_data_from_file(file_detail)
  146. processing_rule = DatasetProcessRule(
  147. mode=tmp_processing_rule["mode"],
  148. rules=json.dumps(tmp_processing_rule["rules"])
  149. )
  150. # get node parser for splitting
  151. node_parser = self._get_node_parser(processing_rule)
  152. # split to nodes
  153. nodes = self._split_to_nodes(
  154. text_docs=text_docs,
  155. node_parser=node_parser,
  156. processing_rule=processing_rule
  157. )
  158. tokens = 0
  159. preview_texts = []
  160. for node in nodes:
  161. if len(preview_texts) < 5:
  162. preview_texts.append(node.get_text())
  163. tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
  164. return {
  165. "total_segments": len(nodes),
  166. "tokens": tokens,
  167. "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
  168. "currency": TokenCalculator.get_currency(self.embedding_model_name),
  169. "preview": preview_texts
  170. }
  171. def _load_data(self, document: Document) -> List[Document]:
  172. # load file
  173. if document.data_source_type != "upload_file":
  174. return []
  175. data_source_info = document.data_source_info_dict
  176. if not data_source_info or 'upload_file_id' not in data_source_info:
  177. raise ValueError("no upload file found")
  178. file_detail = db.session.query(UploadFile). \
  179. filter(UploadFile.id == data_source_info['upload_file_id']). \
  180. one_or_none()
  181. text_docs = self._load_data_from_file(file_detail)
  182. # update document status to splitting
  183. self._update_document_index_status(
  184. document_id=document.id,
  185. after_indexing_status="splitting",
  186. extra_update_params={
  187. Document.file_id: file_detail.id,
  188. Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
  189. Document.parsing_completed_at: datetime.datetime.utcnow()
  190. }
  191. )
  192. # replace doc id to document model id
  193. for text_doc in text_docs:
  194. # remove invalid symbol
  195. text_doc.text = self.filter_string(text_doc.get_text())
  196. text_doc.doc_id = document.id
  197. return text_docs
  198. def filter_string(self, text):
  199. pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
  200. return pattern.sub('', text)
  201. def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
  202. with tempfile.TemporaryDirectory() as temp_dir:
  203. suffix = Path(upload_file.key).suffix
  204. filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
  205. self.storage.download(upload_file.key, filepath)
  206. file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
  207. file_extractor[".markdown"] = MarkdownParser()
  208. file_extractor[".html"] = HTMLParser()
  209. file_extractor[".htm"] = HTMLParser()
  210. file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
  211. loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
  212. text_docs = loader.load_data()
  213. return text_docs
  214. def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
  215. """
  216. Get the NodeParser object according to the processing rule.
  217. """
  218. if processing_rule.mode == "custom":
  219. # The user-defined segmentation rule
  220. rules = json.loads(processing_rule.rules)
  221. segmentation = rules["segmentation"]
  222. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  223. raise ValueError("Custom segment length should be between 50 and 1000.")
  224. separator = segmentation["separator"]
  225. if separator:
  226. separator = separator.replace('\\n', '\n')
  227. character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
  228. chunk_size=segmentation["max_tokens"],
  229. chunk_overlap=0,
  230. fixed_separator=separator,
  231. separators=["\n\n", "。", ".", " ", ""]
  232. )
  233. else:
  234. # Automatic segmentation
  235. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  236. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  237. chunk_overlap=0,
  238. separators=["\n\n", "。", ".", " ", ""]
  239. )
  240. return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
  241. def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
  242. dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
  243. """
  244. Split the text documents into nodes and save them to the document segment.
  245. """
  246. nodes = self._split_to_nodes(
  247. text_docs=text_docs,
  248. node_parser=node_parser,
  249. processing_rule=processing_rule
  250. )
  251. # save node to document segment
  252. doc_store = DatesetDocumentStore(
  253. dataset=dataset,
  254. user_id=document.created_by,
  255. embedding_model_name=self.embedding_model_name,
  256. document_id=document.id
  257. )
  258. doc_store.add_documents(nodes)
  259. # update document status to indexing
  260. cur_time = datetime.datetime.utcnow()
  261. self._update_document_index_status(
  262. document_id=document.id,
  263. after_indexing_status="indexing",
  264. extra_update_params={
  265. Document.cleaning_completed_at: cur_time,
  266. Document.splitting_completed_at: cur_time,
  267. }
  268. )
  269. # update segment status to indexing
  270. self._update_segments_by_document(
  271. document_id=document.id,
  272. update_params={
  273. DocumentSegment.status: "indexing",
  274. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  275. }
  276. )
  277. return nodes
  278. def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
  279. processing_rule: DatasetProcessRule) -> List[Node]:
  280. """
  281. Split the text documents into nodes.
  282. """
  283. all_nodes = []
  284. for text_doc in text_docs:
  285. # document clean
  286. document_text = self._document_clean(text_doc.get_text(), processing_rule)
  287. text_doc.text = document_text
  288. # parse document to nodes
  289. nodes = node_parser.get_nodes_from_documents([text_doc])
  290. nodes = [node for node in nodes if node.text is not None and node.text.strip()]
  291. all_nodes.extend(nodes)
  292. return all_nodes
  293. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  294. """
  295. Clean the document text according to the processing rules.
  296. """
  297. if processing_rule.mode == "automatic":
  298. rules = DatasetProcessRule.AUTOMATIC_RULES
  299. else:
  300. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  301. if 'pre_processing_rules' in rules:
  302. pre_processing_rules = rules["pre_processing_rules"]
  303. for pre_processing_rule in pre_processing_rules:
  304. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  305. # Remove extra spaces
  306. pattern = r'\n{3,}'
  307. text = re.sub(pattern, '\n\n', text)
  308. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  309. text = re.sub(pattern, ' ', text)
  310. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  311. # Remove email
  312. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  313. text = re.sub(pattern, '', text)
  314. # Remove URL
  315. pattern = r'https?://[^\s]+'
  316. text = re.sub(pattern, '', text)
  317. return text
  318. def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
  319. """
  320. Build the index for the document.
  321. """
  322. vector_index = VectorIndex(dataset=dataset)
  323. keyword_table_index = KeywordTableIndex(dataset=dataset)
  324. # chunk nodes by chunk size
  325. indexing_start_at = time.perf_counter()
  326. tokens = 0
  327. chunk_size = 100
  328. for i in range(0, len(nodes), chunk_size):
  329. # check document is paused
  330. self._check_document_paused_status(document.id)
  331. chunk_nodes = nodes[i:i + chunk_size]
  332. tokens += sum(
  333. TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
  334. )
  335. # save vector index
  336. if dataset.indexing_technique == "high_quality":
  337. vector_index.add_nodes(chunk_nodes)
  338. # save keyword index
  339. keyword_table_index.add_nodes(chunk_nodes)
  340. node_ids = [node.doc_id for node in chunk_nodes]
  341. db.session.query(DocumentSegment).filter(
  342. DocumentSegment.document_id == document.id,
  343. DocumentSegment.index_node_id.in_(node_ids),
  344. DocumentSegment.status == "indexing"
  345. ).update({
  346. DocumentSegment.status: "completed",
  347. DocumentSegment.completed_at: datetime.datetime.utcnow()
  348. })
  349. db.session.commit()
  350. indexing_end_at = time.perf_counter()
  351. # update document status to completed
  352. self._update_document_index_status(
  353. document_id=document.id,
  354. after_indexing_status="completed",
  355. extra_update_params={
  356. Document.tokens: tokens,
  357. Document.completed_at: datetime.datetime.utcnow(),
  358. Document.indexing_latency: indexing_end_at - indexing_start_at,
  359. }
  360. )
  361. def _check_document_paused_status(self, document_id: str):
  362. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  363. result = redis_client.get(indexing_cache_key)
  364. if result:
  365. raise DocumentIsPausedException()
  366. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  367. extra_update_params: Optional[dict] = None) -> None:
  368. """
  369. Update the document indexing status.
  370. """
  371. count = Document.query.filter_by(id=document_id, is_paused=True).count()
  372. if count > 0:
  373. raise DocumentIsPausedException()
  374. update_params = {
  375. Document.indexing_status: after_indexing_status
  376. }
  377. if extra_update_params:
  378. update_params.update(extra_update_params)
  379. Document.query.filter_by(id=document_id).update(update_params)
  380. db.session.commit()
  381. def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
  382. """
  383. Update the document segment by document id.
  384. """
  385. DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
  386. db.session.commit()
  387. class DocumentIsPausedException(Exception):
  388. pass