hit_testing_service.py 7.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206
  1. import logging
  2. import threading
  3. import time
  4. import numpy as np
  5. from flask import current_app
  6. from langchain.embeddings.base import Embeddings
  7. from langchain.schema import Document
  8. from sklearn.manifold import TSNE
  9. from core.embedding.cached_embedding import CacheEmbedding
  10. from core.model_manager import ModelManager
  11. from core.model_runtime.entities.model_entities import ModelType
  12. from core.rerank.rerank import RerankRunner
  13. from extensions.ext_database import db
  14. from models.account import Account
  15. from models.dataset import Dataset, DatasetQuery, DocumentSegment
  16. from services.retrieval_service import RetrievalService
  17. default_retrieval_model = {
  18. 'search_method': 'semantic_search',
  19. 'reranking_enable': False,
  20. 'reranking_model': {
  21. 'reranking_provider_name': '',
  22. 'reranking_model_name': ''
  23. },
  24. 'top_k': 2,
  25. 'score_threshold_enabled': False
  26. }
  27. class HitTestingService:
  28. @classmethod
  29. def retrieve(cls, dataset: Dataset, query: str, account: Account, retrieval_model: dict, limit: int = 10) -> dict:
  30. if dataset.available_document_count == 0 or dataset.available_segment_count == 0:
  31. return {
  32. "query": {
  33. "content": query,
  34. "tsne_position": {'x': 0, 'y': 0},
  35. },
  36. "records": []
  37. }
  38. start = time.perf_counter()
  39. # get retrieval model , if the model is not setting , using default
  40. if not retrieval_model:
  41. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  42. # get embedding model
  43. model_manager = ModelManager()
  44. embedding_model = model_manager.get_model_instance(
  45. tenant_id=dataset.tenant_id,
  46. model_type=ModelType.TEXT_EMBEDDING,
  47. provider=dataset.embedding_model_provider,
  48. model=dataset.embedding_model
  49. )
  50. embeddings = CacheEmbedding(embedding_model)
  51. all_documents = []
  52. threads = []
  53. # retrieval_model source with semantic
  54. if retrieval_model['search_method'] == 'semantic_search' or retrieval_model['search_method'] == 'hybrid_search':
  55. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  56. 'flask_app': current_app._get_current_object(),
  57. 'dataset_id': str(dataset.id),
  58. 'query': query,
  59. 'top_k': retrieval_model['top_k'],
  60. 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  61. 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
  62. 'all_documents': all_documents,
  63. 'search_method': retrieval_model['search_method'],
  64. 'embeddings': embeddings
  65. })
  66. threads.append(embedding_thread)
  67. embedding_thread.start()
  68. # retrieval source with full text
  69. if retrieval_model['search_method'] == 'full_text_search' or retrieval_model['search_method'] == 'hybrid_search':
  70. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search, kwargs={
  71. 'flask_app': current_app._get_current_object(),
  72. 'dataset_id': str(dataset.id),
  73. 'query': query,
  74. 'search_method': retrieval_model['search_method'],
  75. 'embeddings': embeddings,
  76. 'score_threshold': retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  77. 'top_k': retrieval_model['top_k'],
  78. 'reranking_model': retrieval_model['reranking_model'] if retrieval_model['reranking_enable'] else None,
  79. 'all_documents': all_documents
  80. })
  81. threads.append(full_text_index_thread)
  82. full_text_index_thread.start()
  83. for thread in threads:
  84. thread.join()
  85. if retrieval_model['search_method'] == 'hybrid_search':
  86. model_manager = ModelManager()
  87. rerank_model_instance = model_manager.get_model_instance(
  88. tenant_id=dataset.tenant_id,
  89. provider=retrieval_model['reranking_model']['reranking_provider_name'],
  90. model_type=ModelType.RERANK,
  91. model=retrieval_model['reranking_model']['reranking_model_name']
  92. )
  93. rerank_runner = RerankRunner(rerank_model_instance)
  94. all_documents = rerank_runner.run(
  95. query=query,
  96. documents=all_documents,
  97. score_threshold=retrieval_model['score_threshold'] if retrieval_model['score_threshold_enabled'] else None,
  98. top_n=retrieval_model['top_k'],
  99. user=f"account-{account.id}"
  100. )
  101. end = time.perf_counter()
  102. logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
  103. dataset_query = DatasetQuery(
  104. dataset_id=dataset.id,
  105. content=query,
  106. source='hit_testing',
  107. created_by_role='account',
  108. created_by=account.id
  109. )
  110. db.session.add(dataset_query)
  111. db.session.commit()
  112. return cls.compact_retrieve_response(dataset, embeddings, query, all_documents)
  113. @classmethod
  114. def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: list[Document]):
  115. text_embeddings = [
  116. embeddings.embed_query(query)
  117. ]
  118. text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
  119. tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
  120. query_position = tsne_position_data.pop(0)
  121. i = 0
  122. records = []
  123. for document in documents:
  124. index_node_id = document.metadata['doc_id']
  125. segment = db.session.query(DocumentSegment).filter(
  126. DocumentSegment.dataset_id == dataset.id,
  127. DocumentSegment.enabled == True,
  128. DocumentSegment.status == 'completed',
  129. DocumentSegment.index_node_id == index_node_id
  130. ).first()
  131. if not segment:
  132. i += 1
  133. continue
  134. record = {
  135. "segment": segment,
  136. "score": document.metadata.get('score', None),
  137. "tsne_position": tsne_position_data[i]
  138. }
  139. records.append(record)
  140. i += 1
  141. return {
  142. "query": {
  143. "content": query,
  144. "tsne_position": query_position,
  145. },
  146. "records": records
  147. }
  148. @classmethod
  149. def get_tsne_positions_from_embeddings(cls, embeddings: list):
  150. embedding_length = len(embeddings)
  151. if embedding_length <= 1:
  152. return [{'x': 0, 'y': 0}]
  153. concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
  154. # concatenate_data = np.concatenate(embeddings)
  155. perplexity = embedding_length / 2 + 1
  156. if perplexity >= embedding_length:
  157. perplexity = max(embedding_length - 1, 1)
  158. tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
  159. data_tsne = tsne.fit_transform(concatenate_data)
  160. tsne_position_data = []
  161. for i in range(len(data_tsne)):
  162. tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
  163. return tsne_position_data
  164. @classmethod
  165. def hit_testing_args_check(cls, args):
  166. query = args['query']
  167. if not query or len(query) > 250:
  168. raise ValueError('Query is required and cannot exceed 250 characters')