dataset_service.py 63 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. import datetime
  2. import json
  3. import logging
  4. import random
  5. import time
  6. import uuid
  7. from typing import Optional, cast
  8. from flask import current_app
  9. from flask_login import current_user
  10. from sqlalchemy import func
  11. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_manager import ModelManager
  13. from core.model_runtime.entities.model_entities import ModelType
  14. from core.model_runtime.model_providers.__base.text_embedding_model import TextEmbeddingModel
  15. from core.rag.datasource.keyword.keyword_factory import Keyword
  16. from core.rag.models.document import Document as RAGDocument
  17. from events.dataset_event import dataset_was_deleted
  18. from events.document_event import document_was_deleted
  19. from extensions.ext_database import db
  20. from extensions.ext_redis import redis_client
  21. from libs import helper
  22. from models.account import Account
  23. from models.dataset import (
  24. AppDatasetJoin,
  25. Dataset,
  26. DatasetCollectionBinding,
  27. DatasetProcessRule,
  28. DatasetQuery,
  29. Document,
  30. DocumentSegment,
  31. )
  32. from models.model import UploadFile
  33. from models.source import DataSourceBinding
  34. from services.errors.account import NoPermissionError
  35. from services.errors.dataset import DatasetNameDuplicateError
  36. from services.errors.document import DocumentIndexingError
  37. from services.errors.file import FileNotExistsError
  38. from services.feature_service import FeatureModel, FeatureService
  39. from services.tag_service import TagService
  40. from services.vector_service import VectorService
  41. from tasks.clean_notion_document_task import clean_notion_document_task
  42. from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
  43. from tasks.delete_segment_from_index_task import delete_segment_from_index_task
  44. from tasks.disable_segment_from_index_task import disable_segment_from_index_task
  45. from tasks.document_indexing_task import document_indexing_task
  46. from tasks.document_indexing_update_task import document_indexing_update_task
  47. from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
  48. from tasks.recover_document_indexing_task import recover_document_indexing_task
  49. from tasks.retry_document_indexing_task import retry_document_indexing_task
  50. class DatasetService:
  51. @staticmethod
  52. def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
  53. if user:
  54. permission_filter = db.or_(Dataset.created_by == user.id,
  55. Dataset.permission == 'all_team_members')
  56. else:
  57. permission_filter = Dataset.permission == 'all_team_members'
  58. query = Dataset.query.filter(
  59. db.and_(Dataset.provider == provider, Dataset.tenant_id == tenant_id, permission_filter)) \
  60. .order_by(Dataset.created_at.desc())
  61. if search:
  62. query = query.filter(db.and_(Dataset.name.ilike(f'%{search}%')))
  63. if tag_ids:
  64. target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
  65. if target_ids:
  66. query = query.filter(db.and_(Dataset.id.in_(target_ids)))
  67. else:
  68. return [], 0
  69. datasets = query.paginate(
  70. page=page,
  71. per_page=per_page,
  72. max_per_page=100,
  73. error_out=False
  74. )
  75. return datasets.items, datasets.total
  76. @staticmethod
  77. def get_process_rules(dataset_id):
  78. # get the latest process rule
  79. dataset_process_rule = db.session.query(DatasetProcessRule). \
  80. filter(DatasetProcessRule.dataset_id == dataset_id). \
  81. order_by(DatasetProcessRule.created_at.desc()). \
  82. limit(1). \
  83. one_or_none()
  84. if dataset_process_rule:
  85. mode = dataset_process_rule.mode
  86. rules = dataset_process_rule.rules_dict
  87. else:
  88. mode = DocumentService.DEFAULT_RULES['mode']
  89. rules = DocumentService.DEFAULT_RULES['rules']
  90. return {
  91. 'mode': mode,
  92. 'rules': rules
  93. }
  94. @staticmethod
  95. def get_datasets_by_ids(ids, tenant_id):
  96. datasets = Dataset.query.filter(Dataset.id.in_(ids),
  97. Dataset.tenant_id == tenant_id).paginate(
  98. page=1, per_page=len(ids), max_per_page=len(ids), error_out=False)
  99. return datasets.items, datasets.total
  100. @staticmethod
  101. def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
  102. # check if dataset name already exists
  103. if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
  104. raise DatasetNameDuplicateError(
  105. f'Dataset with name {name} already exists.')
  106. embedding_model = None
  107. if indexing_technique == 'high_quality':
  108. model_manager = ModelManager()
  109. embedding_model = model_manager.get_default_model_instance(
  110. tenant_id=tenant_id,
  111. model_type=ModelType.TEXT_EMBEDDING
  112. )
  113. dataset = Dataset(name=name, indexing_technique=indexing_technique)
  114. # dataset = Dataset(name=name, provider=provider, config=config)
  115. dataset.created_by = account.id
  116. dataset.updated_by = account.id
  117. dataset.tenant_id = tenant_id
  118. dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
  119. dataset.embedding_model = embedding_model.model if embedding_model else None
  120. db.session.add(dataset)
  121. db.session.commit()
  122. return dataset
  123. @staticmethod
  124. def get_dataset(dataset_id):
  125. return Dataset.query.filter_by(
  126. id=dataset_id
  127. ).first()
  128. @staticmethod
  129. def check_dataset_model_setting(dataset):
  130. if dataset.indexing_technique == 'high_quality':
  131. try:
  132. model_manager = ModelManager()
  133. model_manager.get_model_instance(
  134. tenant_id=dataset.tenant_id,
  135. provider=dataset.embedding_model_provider,
  136. model_type=ModelType.TEXT_EMBEDDING,
  137. model=dataset.embedding_model
  138. )
  139. except LLMBadRequestError:
  140. raise ValueError(
  141. "No Embedding Model available. Please configure a valid provider "
  142. "in the Settings -> Model Provider.")
  143. except ProviderTokenNotInitError as ex:
  144. raise ValueError(f"The dataset in unavailable, due to: "
  145. f"{ex.description}")
  146. @staticmethod
  147. def update_dataset(dataset_id, data, user):
  148. filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
  149. dataset = DatasetService.get_dataset(dataset_id)
  150. DatasetService.check_dataset_permission(dataset, user)
  151. action = None
  152. if dataset.indexing_technique != data['indexing_technique']:
  153. # if update indexing_technique
  154. if data['indexing_technique'] == 'economy':
  155. action = 'remove'
  156. filtered_data['embedding_model'] = None
  157. filtered_data['embedding_model_provider'] = None
  158. filtered_data['collection_binding_id'] = None
  159. elif data['indexing_technique'] == 'high_quality':
  160. action = 'add'
  161. # get embedding model setting
  162. try:
  163. model_manager = ModelManager()
  164. embedding_model = model_manager.get_model_instance(
  165. tenant_id=current_user.current_tenant_id,
  166. provider=data['embedding_model_provider'],
  167. model_type=ModelType.TEXT_EMBEDDING,
  168. model=data['embedding_model']
  169. )
  170. filtered_data['embedding_model'] = embedding_model.model
  171. filtered_data['embedding_model_provider'] = embedding_model.provider
  172. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  173. embedding_model.provider,
  174. embedding_model.model
  175. )
  176. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  177. except LLMBadRequestError:
  178. raise ValueError(
  179. "No Embedding Model available. Please configure a valid provider "
  180. "in the Settings -> Model Provider.")
  181. except ProviderTokenNotInitError as ex:
  182. raise ValueError(ex.description)
  183. else:
  184. if data['embedding_model_provider'] != dataset.embedding_model_provider or \
  185. data['embedding_model'] != dataset.embedding_model:
  186. action = 'update'
  187. try:
  188. model_manager = ModelManager()
  189. embedding_model = model_manager.get_model_instance(
  190. tenant_id=current_user.current_tenant_id,
  191. provider=data['embedding_model_provider'],
  192. model_type=ModelType.TEXT_EMBEDDING,
  193. model=data['embedding_model']
  194. )
  195. filtered_data['embedding_model'] = embedding_model.model
  196. filtered_data['embedding_model_provider'] = embedding_model.provider
  197. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  198. embedding_model.provider,
  199. embedding_model.model
  200. )
  201. filtered_data['collection_binding_id'] = dataset_collection_binding.id
  202. except LLMBadRequestError:
  203. raise ValueError(
  204. "No Embedding Model available. Please configure a valid provider "
  205. "in the Settings -> Model Provider.")
  206. except ProviderTokenNotInitError as ex:
  207. raise ValueError(ex.description)
  208. filtered_data['updated_by'] = user.id
  209. filtered_data['updated_at'] = datetime.datetime.now()
  210. # update Retrieval model
  211. filtered_data['retrieval_model'] = data['retrieval_model']
  212. dataset.query.filter_by(id=dataset_id).update(filtered_data)
  213. db.session.commit()
  214. if action:
  215. deal_dataset_vector_index_task.delay(dataset_id, action)
  216. return dataset
  217. @staticmethod
  218. def delete_dataset(dataset_id, user):
  219. # todo: cannot delete dataset if it is being processed
  220. dataset = DatasetService.get_dataset(dataset_id)
  221. if dataset is None:
  222. return False
  223. DatasetService.check_dataset_permission(dataset, user)
  224. dataset_was_deleted.send(dataset)
  225. db.session.delete(dataset)
  226. db.session.commit()
  227. return True
  228. @staticmethod
  229. def check_dataset_permission(dataset, user):
  230. if dataset.tenant_id != user.current_tenant_id:
  231. logging.debug(
  232. f'User {user.id} does not have permission to access dataset {dataset.id}')
  233. raise NoPermissionError(
  234. 'You do not have permission to access this dataset.')
  235. if dataset.permission == 'only_me' and dataset.created_by != user.id:
  236. logging.debug(
  237. f'User {user.id} does not have permission to access dataset {dataset.id}')
  238. raise NoPermissionError(
  239. 'You do not have permission to access this dataset.')
  240. @staticmethod
  241. def get_dataset_queries(dataset_id: str, page: int, per_page: int):
  242. dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
  243. .order_by(db.desc(DatasetQuery.created_at)) \
  244. .paginate(
  245. page=page, per_page=per_page, max_per_page=100, error_out=False
  246. )
  247. return dataset_queries.items, dataset_queries.total
  248. @staticmethod
  249. def get_related_apps(dataset_id: str):
  250. return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
  251. .order_by(db.desc(AppDatasetJoin.created_at)).all()
  252. class DocumentService:
  253. DEFAULT_RULES = {
  254. 'mode': 'custom',
  255. 'rules': {
  256. 'pre_processing_rules': [
  257. {'id': 'remove_extra_spaces', 'enabled': True},
  258. {'id': 'remove_urls_emails', 'enabled': False}
  259. ],
  260. 'segmentation': {
  261. 'delimiter': '\n',
  262. 'max_tokens': 500,
  263. 'chunk_overlap': 50
  264. }
  265. }
  266. }
  267. DOCUMENT_METADATA_SCHEMA = {
  268. "book": {
  269. "title": str,
  270. "language": str,
  271. "author": str,
  272. "publisher": str,
  273. "publication_date": str,
  274. "isbn": str,
  275. "category": str,
  276. },
  277. "web_page": {
  278. "title": str,
  279. "url": str,
  280. "language": str,
  281. "publish_date": str,
  282. "author/publisher": str,
  283. "topic/keywords": str,
  284. "description": str,
  285. },
  286. "paper": {
  287. "title": str,
  288. "language": str,
  289. "author": str,
  290. "publish_date": str,
  291. "journal/conference_name": str,
  292. "volume/issue/page_numbers": str,
  293. "doi": str,
  294. "topic/keywords": str,
  295. "abstract": str,
  296. },
  297. "social_media_post": {
  298. "platform": str,
  299. "author/username": str,
  300. "publish_date": str,
  301. "post_url": str,
  302. "topic/tags": str,
  303. },
  304. "wikipedia_entry": {
  305. "title": str,
  306. "language": str,
  307. "web_page_url": str,
  308. "last_edit_date": str,
  309. "editor/contributor": str,
  310. "summary/introduction": str,
  311. },
  312. "personal_document": {
  313. "title": str,
  314. "author": str,
  315. "creation_date": str,
  316. "last_modified_date": str,
  317. "document_type": str,
  318. "tags/category": str,
  319. },
  320. "business_document": {
  321. "title": str,
  322. "author": str,
  323. "creation_date": str,
  324. "last_modified_date": str,
  325. "document_type": str,
  326. "department/team": str,
  327. },
  328. "im_chat_log": {
  329. "chat_platform": str,
  330. "chat_participants/group_name": str,
  331. "start_date": str,
  332. "end_date": str,
  333. "summary": str,
  334. },
  335. "synced_from_notion": {
  336. "title": str,
  337. "language": str,
  338. "author/creator": str,
  339. "creation_date": str,
  340. "last_modified_date": str,
  341. "notion_page_link": str,
  342. "category/tags": str,
  343. "description": str,
  344. },
  345. "synced_from_github": {
  346. "repository_name": str,
  347. "repository_description": str,
  348. "repository_owner/organization": str,
  349. "code_filename": str,
  350. "code_file_path": str,
  351. "programming_language": str,
  352. "github_link": str,
  353. "open_source_license": str,
  354. "commit_date": str,
  355. "commit_author": str,
  356. },
  357. "others": dict
  358. }
  359. @staticmethod
  360. def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
  361. document = db.session.query(Document).filter(
  362. Document.id == document_id,
  363. Document.dataset_id == dataset_id
  364. ).first()
  365. return document
  366. @staticmethod
  367. def get_document_by_id(document_id: str) -> Optional[Document]:
  368. document = db.session.query(Document).filter(
  369. Document.id == document_id
  370. ).first()
  371. return document
  372. @staticmethod
  373. def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
  374. documents = db.session.query(Document).filter(
  375. Document.dataset_id == dataset_id,
  376. Document.enabled == True
  377. ).all()
  378. return documents
  379. @staticmethod
  380. def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
  381. documents = db.session.query(Document).filter(
  382. Document.dataset_id == dataset_id,
  383. Document.indexing_status.in_(['error', 'paused'])
  384. ).all()
  385. return documents
  386. @staticmethod
  387. def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
  388. documents = db.session.query(Document).filter(
  389. Document.batch == batch,
  390. Document.dataset_id == dataset_id,
  391. Document.tenant_id == current_user.current_tenant_id
  392. ).all()
  393. return documents
  394. @staticmethod
  395. def get_document_file_detail(file_id: str):
  396. file_detail = db.session.query(UploadFile). \
  397. filter(UploadFile.id == file_id). \
  398. one_or_none()
  399. return file_detail
  400. @staticmethod
  401. def check_archived(document):
  402. if document.archived:
  403. return True
  404. else:
  405. return False
  406. @staticmethod
  407. def delete_document(document):
  408. # trigger document_was_deleted signal
  409. document_was_deleted.send(document.id, dataset_id=document.dataset_id, doc_form=document.doc_form)
  410. db.session.delete(document)
  411. db.session.commit()
  412. @staticmethod
  413. def pause_document(document):
  414. if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
  415. raise DocumentIndexingError()
  416. # update document to be paused
  417. document.is_paused = True
  418. document.paused_by = current_user.id
  419. document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  420. db.session.add(document)
  421. db.session.commit()
  422. # set document paused flag
  423. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  424. redis_client.setnx(indexing_cache_key, "True")
  425. @staticmethod
  426. def recover_document(document):
  427. if not document.is_paused:
  428. raise DocumentIndexingError()
  429. # update document to be recover
  430. document.is_paused = False
  431. document.paused_by = None
  432. document.paused_at = None
  433. db.session.add(document)
  434. db.session.commit()
  435. # delete paused flag
  436. indexing_cache_key = 'document_{}_is_paused'.format(document.id)
  437. redis_client.delete(indexing_cache_key)
  438. # trigger async task
  439. recover_document_indexing_task.delay(document.dataset_id, document.id)
  440. @staticmethod
  441. def retry_document(dataset_id: str, documents: list[Document]):
  442. for document in documents:
  443. # retry document indexing
  444. document.indexing_status = 'waiting'
  445. db.session.add(document)
  446. db.session.commit()
  447. # add retry flag
  448. retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
  449. redis_client.setex(retry_indexing_cache_key, 600, 1)
  450. # trigger async task
  451. document_ids = [document.id for document in documents]
  452. retry_document_indexing_task.delay(dataset_id, document_ids)
  453. @staticmethod
  454. def get_documents_position(dataset_id):
  455. document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
  456. if document:
  457. return document.position + 1
  458. else:
  459. return 1
  460. @staticmethod
  461. def save_document_with_dataset_id(dataset: Dataset, document_data: dict,
  462. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  463. created_from: str = 'web'):
  464. # check document limit
  465. features = FeatureService.get_features(current_user.current_tenant_id)
  466. if features.billing.enabled:
  467. if 'original_document_id' not in document_data or not document_data['original_document_id']:
  468. count = 0
  469. if document_data["data_source"]["type"] == "upload_file":
  470. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  471. count = len(upload_file_list)
  472. elif document_data["data_source"]["type"] == "notion_import":
  473. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  474. for notion_info in notion_info_list:
  475. count = count + len(notion_info['pages'])
  476. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  477. if count > batch_upload_limit:
  478. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  479. DocumentService.check_documents_upload_quota(count, features)
  480. # if dataset is empty, update dataset data_source_type
  481. if not dataset.data_source_type:
  482. dataset.data_source_type = document_data["data_source"]["type"]
  483. if not dataset.indexing_technique:
  484. if 'indexing_technique' not in document_data \
  485. or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
  486. raise ValueError("Indexing technique is required")
  487. dataset.indexing_technique = document_data["indexing_technique"]
  488. if document_data["indexing_technique"] == 'high_quality':
  489. model_manager = ModelManager()
  490. embedding_model = model_manager.get_default_model_instance(
  491. tenant_id=current_user.current_tenant_id,
  492. model_type=ModelType.TEXT_EMBEDDING
  493. )
  494. dataset.embedding_model = embedding_model.model
  495. dataset.embedding_model_provider = embedding_model.provider
  496. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  497. embedding_model.provider,
  498. embedding_model.model
  499. )
  500. dataset.collection_binding_id = dataset_collection_binding.id
  501. if not dataset.retrieval_model:
  502. default_retrieval_model = {
  503. 'search_method': 'semantic_search',
  504. 'reranking_enable': False,
  505. 'reranking_model': {
  506. 'reranking_provider_name': '',
  507. 'reranking_model_name': ''
  508. },
  509. 'top_k': 2,
  510. 'score_threshold_enabled': False
  511. }
  512. dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
  513. 'retrieval_model') else default_retrieval_model
  514. documents = []
  515. batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
  516. if document_data.get("original_document_id"):
  517. document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
  518. documents.append(document)
  519. else:
  520. # save process rule
  521. if not dataset_process_rule:
  522. process_rule = document_data["process_rule"]
  523. if process_rule["mode"] == "custom":
  524. dataset_process_rule = DatasetProcessRule(
  525. dataset_id=dataset.id,
  526. mode=process_rule["mode"],
  527. rules=json.dumps(process_rule["rules"]),
  528. created_by=account.id
  529. )
  530. elif process_rule["mode"] == "automatic":
  531. dataset_process_rule = DatasetProcessRule(
  532. dataset_id=dataset.id,
  533. mode=process_rule["mode"],
  534. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  535. created_by=account.id
  536. )
  537. db.session.add(dataset_process_rule)
  538. db.session.commit()
  539. position = DocumentService.get_documents_position(dataset.id)
  540. document_ids = []
  541. duplicate_document_ids = []
  542. if document_data["data_source"]["type"] == "upload_file":
  543. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  544. for file_id in upload_file_list:
  545. file = db.session.query(UploadFile).filter(
  546. UploadFile.tenant_id == dataset.tenant_id,
  547. UploadFile.id == file_id
  548. ).first()
  549. # raise error if file not found
  550. if not file:
  551. raise FileNotExistsError()
  552. file_name = file.name
  553. data_source_info = {
  554. "upload_file_id": file_id,
  555. }
  556. # check duplicate
  557. if document_data.get('duplicate', False):
  558. document = Document.query.filter_by(
  559. dataset_id=dataset.id,
  560. tenant_id=current_user.current_tenant_id,
  561. data_source_type='upload_file',
  562. enabled=True,
  563. name=file_name
  564. ).first()
  565. if document:
  566. document.dataset_process_rule_id = dataset_process_rule.id
  567. document.updated_at = datetime.datetime.utcnow()
  568. document.created_from = created_from
  569. document.doc_form = document_data['doc_form']
  570. document.doc_language = document_data['doc_language']
  571. document.data_source_info = json.dumps(data_source_info)
  572. document.batch = batch
  573. document.indexing_status = 'waiting'
  574. db.session.add(document)
  575. documents.append(document)
  576. duplicate_document_ids.append(document.id)
  577. continue
  578. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  579. document_data["data_source"]["type"],
  580. document_data["doc_form"],
  581. document_data["doc_language"],
  582. data_source_info, created_from, position,
  583. account, file_name, batch)
  584. db.session.add(document)
  585. db.session.flush()
  586. document_ids.append(document.id)
  587. documents.append(document)
  588. position += 1
  589. elif document_data["data_source"]["type"] == "notion_import":
  590. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  591. exist_page_ids = []
  592. exist_document = dict()
  593. documents = Document.query.filter_by(
  594. dataset_id=dataset.id,
  595. tenant_id=current_user.current_tenant_id,
  596. data_source_type='notion_import',
  597. enabled=True
  598. ).all()
  599. if documents:
  600. for document in documents:
  601. data_source_info = json.loads(document.data_source_info)
  602. exist_page_ids.append(data_source_info['notion_page_id'])
  603. exist_document[data_source_info['notion_page_id']] = document.id
  604. for notion_info in notion_info_list:
  605. workspace_id = notion_info['workspace_id']
  606. data_source_binding = DataSourceBinding.query.filter(
  607. db.and_(
  608. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  609. DataSourceBinding.provider == 'notion',
  610. DataSourceBinding.disabled == False,
  611. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  612. )
  613. ).first()
  614. if not data_source_binding:
  615. raise ValueError('Data source binding not found.')
  616. for page in notion_info['pages']:
  617. if page['page_id'] not in exist_page_ids:
  618. data_source_info = {
  619. "notion_workspace_id": workspace_id,
  620. "notion_page_id": page['page_id'],
  621. "notion_page_icon": page['page_icon'],
  622. "type": page['type']
  623. }
  624. document = DocumentService.build_document(dataset, dataset_process_rule.id,
  625. document_data["data_source"]["type"],
  626. document_data["doc_form"],
  627. document_data["doc_language"],
  628. data_source_info, created_from, position,
  629. account, page['page_name'], batch)
  630. db.session.add(document)
  631. db.session.flush()
  632. document_ids.append(document.id)
  633. documents.append(document)
  634. position += 1
  635. else:
  636. exist_document.pop(page['page_id'])
  637. # delete not selected documents
  638. if len(exist_document) > 0:
  639. clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
  640. db.session.commit()
  641. # trigger async task
  642. if document_ids:
  643. document_indexing_task.delay(dataset.id, document_ids)
  644. if duplicate_document_ids:
  645. duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
  646. return documents, batch
  647. @staticmethod
  648. def check_documents_upload_quota(count: int, features: FeatureModel):
  649. can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
  650. if count > can_upload_size:
  651. raise ValueError(
  652. f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.')
  653. @staticmethod
  654. def build_document(dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
  655. document_language: str, data_source_info: dict, created_from: str, position: int,
  656. account: Account,
  657. name: str, batch: str):
  658. document = Document(
  659. tenant_id=dataset.tenant_id,
  660. dataset_id=dataset.id,
  661. position=position,
  662. data_source_type=data_source_type,
  663. data_source_info=json.dumps(data_source_info),
  664. dataset_process_rule_id=process_rule_id,
  665. batch=batch,
  666. name=name,
  667. created_from=created_from,
  668. created_by=account.id,
  669. doc_form=document_form,
  670. doc_language=document_language
  671. )
  672. return document
  673. @staticmethod
  674. def get_tenant_documents_count():
  675. documents_count = Document.query.filter(Document.completed_at.isnot(None),
  676. Document.enabled == True,
  677. Document.archived == False,
  678. Document.tenant_id == current_user.current_tenant_id).count()
  679. return documents_count
  680. @staticmethod
  681. def update_document_with_dataset_id(dataset: Dataset, document_data: dict,
  682. account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
  683. created_from: str = 'web'):
  684. DatasetService.check_dataset_model_setting(dataset)
  685. document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
  686. if document.display_status != 'available':
  687. raise ValueError("Document is not available")
  688. # update document name
  689. if document_data.get('name'):
  690. document.name = document_data['name']
  691. # save process rule
  692. if document_data.get('process_rule'):
  693. process_rule = document_data["process_rule"]
  694. if process_rule["mode"] == "custom":
  695. dataset_process_rule = DatasetProcessRule(
  696. dataset_id=dataset.id,
  697. mode=process_rule["mode"],
  698. rules=json.dumps(process_rule["rules"]),
  699. created_by=account.id
  700. )
  701. elif process_rule["mode"] == "automatic":
  702. dataset_process_rule = DatasetProcessRule(
  703. dataset_id=dataset.id,
  704. mode=process_rule["mode"],
  705. rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
  706. created_by=account.id
  707. )
  708. db.session.add(dataset_process_rule)
  709. db.session.commit()
  710. document.dataset_process_rule_id = dataset_process_rule.id
  711. # update document data source
  712. if document_data.get('data_source'):
  713. file_name = ''
  714. data_source_info = {}
  715. if document_data["data_source"]["type"] == "upload_file":
  716. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  717. for file_id in upload_file_list:
  718. file = db.session.query(UploadFile).filter(
  719. UploadFile.tenant_id == dataset.tenant_id,
  720. UploadFile.id == file_id
  721. ).first()
  722. # raise error if file not found
  723. if not file:
  724. raise FileNotExistsError()
  725. file_name = file.name
  726. data_source_info = {
  727. "upload_file_id": file_id,
  728. }
  729. elif document_data["data_source"]["type"] == "notion_import":
  730. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  731. for notion_info in notion_info_list:
  732. workspace_id = notion_info['workspace_id']
  733. data_source_binding = DataSourceBinding.query.filter(
  734. db.and_(
  735. DataSourceBinding.tenant_id == current_user.current_tenant_id,
  736. DataSourceBinding.provider == 'notion',
  737. DataSourceBinding.disabled == False,
  738. DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
  739. )
  740. ).first()
  741. if not data_source_binding:
  742. raise ValueError('Data source binding not found.')
  743. for page in notion_info['pages']:
  744. data_source_info = {
  745. "notion_workspace_id": workspace_id,
  746. "notion_page_id": page['page_id'],
  747. "notion_page_icon": page['page_icon'],
  748. "type": page['type']
  749. }
  750. document.data_source_type = document_data["data_source"]["type"]
  751. document.data_source_info = json.dumps(data_source_info)
  752. document.name = file_name
  753. # update document to be waiting
  754. document.indexing_status = 'waiting'
  755. document.completed_at = None
  756. document.processing_started_at = None
  757. document.parsing_completed_at = None
  758. document.cleaning_completed_at = None
  759. document.splitting_completed_at = None
  760. document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  761. document.created_from = created_from
  762. document.doc_form = document_data['doc_form']
  763. db.session.add(document)
  764. db.session.commit()
  765. # update document segment
  766. update_params = {
  767. DocumentSegment.status: 're_segment'
  768. }
  769. DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
  770. db.session.commit()
  771. # trigger async task
  772. document_indexing_update_task.delay(document.dataset_id, document.id)
  773. return document
  774. @staticmethod
  775. def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
  776. features = FeatureService.get_features(current_user.current_tenant_id)
  777. if features.billing.enabled:
  778. count = 0
  779. if document_data["data_source"]["type"] == "upload_file":
  780. upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
  781. count = len(upload_file_list)
  782. elif document_data["data_source"]["type"] == "notion_import":
  783. notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
  784. for notion_info in notion_info_list:
  785. count = count + len(notion_info['pages'])
  786. batch_upload_limit = int(current_app.config['BATCH_UPLOAD_LIMIT'])
  787. if count > batch_upload_limit:
  788. raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
  789. DocumentService.check_documents_upload_quota(count, features)
  790. embedding_model = None
  791. dataset_collection_binding_id = None
  792. retrieval_model = None
  793. if document_data['indexing_technique'] == 'high_quality':
  794. model_manager = ModelManager()
  795. embedding_model = model_manager.get_default_model_instance(
  796. tenant_id=current_user.current_tenant_id,
  797. model_type=ModelType.TEXT_EMBEDDING
  798. )
  799. dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
  800. embedding_model.provider,
  801. embedding_model.model
  802. )
  803. dataset_collection_binding_id = dataset_collection_binding.id
  804. if document_data.get('retrieval_model'):
  805. retrieval_model = document_data['retrieval_model']
  806. else:
  807. default_retrieval_model = {
  808. 'search_method': 'semantic_search',
  809. 'reranking_enable': False,
  810. 'reranking_model': {
  811. 'reranking_provider_name': '',
  812. 'reranking_model_name': ''
  813. },
  814. 'top_k': 2,
  815. 'score_threshold_enabled': False
  816. }
  817. retrieval_model = default_retrieval_model
  818. # save dataset
  819. dataset = Dataset(
  820. tenant_id=tenant_id,
  821. name='',
  822. data_source_type=document_data["data_source"]["type"],
  823. indexing_technique=document_data["indexing_technique"],
  824. created_by=account.id,
  825. embedding_model=embedding_model.model if embedding_model else None,
  826. embedding_model_provider=embedding_model.provider if embedding_model else None,
  827. collection_binding_id=dataset_collection_binding_id,
  828. retrieval_model=retrieval_model
  829. )
  830. db.session.add(dataset)
  831. db.session.flush()
  832. documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
  833. cut_length = 18
  834. cut_name = documents[0].name[:cut_length]
  835. dataset.name = cut_name + '...'
  836. dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
  837. db.session.commit()
  838. return dataset, documents, batch
  839. @classmethod
  840. def document_create_args_validate(cls, args: dict):
  841. if 'original_document_id' not in args or not args['original_document_id']:
  842. DocumentService.data_source_args_validate(args)
  843. DocumentService.process_rule_args_validate(args)
  844. else:
  845. if ('data_source' not in args and not args['data_source']) \
  846. and ('process_rule' not in args and not args['process_rule']):
  847. raise ValueError("Data source or Process rule is required")
  848. else:
  849. if args.get('data_source'):
  850. DocumentService.data_source_args_validate(args)
  851. if args.get('process_rule'):
  852. DocumentService.process_rule_args_validate(args)
  853. @classmethod
  854. def data_source_args_validate(cls, args: dict):
  855. if 'data_source' not in args or not args['data_source']:
  856. raise ValueError("Data source is required")
  857. if not isinstance(args['data_source'], dict):
  858. raise ValueError("Data source is invalid")
  859. if 'type' not in args['data_source'] or not args['data_source']['type']:
  860. raise ValueError("Data source type is required")
  861. if args['data_source']['type'] not in Document.DATA_SOURCES:
  862. raise ValueError("Data source type is invalid")
  863. if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
  864. raise ValueError("Data source info is required")
  865. if args['data_source']['type'] == 'upload_file':
  866. if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  867. 'file_info_list']:
  868. raise ValueError("File source info is required")
  869. if args['data_source']['type'] == 'notion_import':
  870. if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
  871. 'notion_info_list']:
  872. raise ValueError("Notion source info is required")
  873. @classmethod
  874. def process_rule_args_validate(cls, args: dict):
  875. if 'process_rule' not in args or not args['process_rule']:
  876. raise ValueError("Process rule is required")
  877. if not isinstance(args['process_rule'], dict):
  878. raise ValueError("Process rule is invalid")
  879. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  880. raise ValueError("Process rule mode is required")
  881. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  882. raise ValueError("Process rule mode is invalid")
  883. if args['process_rule']['mode'] == 'automatic':
  884. args['process_rule']['rules'] = {}
  885. else:
  886. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  887. raise ValueError("Process rule rules is required")
  888. if not isinstance(args['process_rule']['rules'], dict):
  889. raise ValueError("Process rule rules is invalid")
  890. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  891. or args['process_rule']['rules']['pre_processing_rules'] is None:
  892. raise ValueError("Process rule pre_processing_rules is required")
  893. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  894. raise ValueError("Process rule pre_processing_rules is invalid")
  895. unique_pre_processing_rule_dicts = {}
  896. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  897. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  898. raise ValueError("Process rule pre_processing_rules id is required")
  899. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  900. raise ValueError("Process rule pre_processing_rules id is invalid")
  901. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  902. raise ValueError("Process rule pre_processing_rules enabled is required")
  903. if not isinstance(pre_processing_rule['enabled'], bool):
  904. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  905. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  906. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  907. if 'segmentation' not in args['process_rule']['rules'] \
  908. or args['process_rule']['rules']['segmentation'] is None:
  909. raise ValueError("Process rule segmentation is required")
  910. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  911. raise ValueError("Process rule segmentation is invalid")
  912. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  913. or not args['process_rule']['rules']['segmentation']['separator']:
  914. raise ValueError("Process rule segmentation separator is required")
  915. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  916. raise ValueError("Process rule segmentation separator is invalid")
  917. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  918. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  919. raise ValueError("Process rule segmentation max_tokens is required")
  920. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  921. raise ValueError("Process rule segmentation max_tokens is invalid")
  922. @classmethod
  923. def estimate_args_validate(cls, args: dict):
  924. if 'info_list' not in args or not args['info_list']:
  925. raise ValueError("Data source info is required")
  926. if not isinstance(args['info_list'], dict):
  927. raise ValueError("Data info is invalid")
  928. if 'process_rule' not in args or not args['process_rule']:
  929. raise ValueError("Process rule is required")
  930. if not isinstance(args['process_rule'], dict):
  931. raise ValueError("Process rule is invalid")
  932. if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
  933. raise ValueError("Process rule mode is required")
  934. if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
  935. raise ValueError("Process rule mode is invalid")
  936. if args['process_rule']['mode'] == 'automatic':
  937. args['process_rule']['rules'] = {}
  938. else:
  939. if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
  940. raise ValueError("Process rule rules is required")
  941. if not isinstance(args['process_rule']['rules'], dict):
  942. raise ValueError("Process rule rules is invalid")
  943. if 'pre_processing_rules' not in args['process_rule']['rules'] \
  944. or args['process_rule']['rules']['pre_processing_rules'] is None:
  945. raise ValueError("Process rule pre_processing_rules is required")
  946. if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
  947. raise ValueError("Process rule pre_processing_rules is invalid")
  948. unique_pre_processing_rule_dicts = {}
  949. for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
  950. if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
  951. raise ValueError("Process rule pre_processing_rules id is required")
  952. if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
  953. raise ValueError("Process rule pre_processing_rules id is invalid")
  954. if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
  955. raise ValueError("Process rule pre_processing_rules enabled is required")
  956. if not isinstance(pre_processing_rule['enabled'], bool):
  957. raise ValueError("Process rule pre_processing_rules enabled is invalid")
  958. unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
  959. args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
  960. if 'segmentation' not in args['process_rule']['rules'] \
  961. or args['process_rule']['rules']['segmentation'] is None:
  962. raise ValueError("Process rule segmentation is required")
  963. if not isinstance(args['process_rule']['rules']['segmentation'], dict):
  964. raise ValueError("Process rule segmentation is invalid")
  965. if 'separator' not in args['process_rule']['rules']['segmentation'] \
  966. or not args['process_rule']['rules']['segmentation']['separator']:
  967. raise ValueError("Process rule segmentation separator is required")
  968. if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
  969. raise ValueError("Process rule segmentation separator is invalid")
  970. if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
  971. or not args['process_rule']['rules']['segmentation']['max_tokens']:
  972. raise ValueError("Process rule segmentation max_tokens is required")
  973. if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
  974. raise ValueError("Process rule segmentation max_tokens is invalid")
  975. class SegmentService:
  976. @classmethod
  977. def segment_create_args_validate(cls, args: dict, document: Document):
  978. if document.doc_form == 'qa_model':
  979. if 'answer' not in args or not args['answer']:
  980. raise ValueError("Answer is required")
  981. if not args['answer'].strip():
  982. raise ValueError("Answer is empty")
  983. if 'content' not in args or not args['content'] or not args['content'].strip():
  984. raise ValueError("Content is empty")
  985. @classmethod
  986. def create_segment(cls, args: dict, document: Document, dataset: Dataset):
  987. content = args['content']
  988. doc_id = str(uuid.uuid4())
  989. segment_hash = helper.generate_text_hash(content)
  990. tokens = 0
  991. if dataset.indexing_technique == 'high_quality':
  992. model_manager = ModelManager()
  993. embedding_model = model_manager.get_model_instance(
  994. tenant_id=current_user.current_tenant_id,
  995. provider=dataset.embedding_model_provider,
  996. model_type=ModelType.TEXT_EMBEDDING,
  997. model=dataset.embedding_model
  998. )
  999. # calc embedding use tokens
  1000. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1001. tokens = model_type_instance.get_num_tokens(
  1002. model=embedding_model.model,
  1003. credentials=embedding_model.credentials,
  1004. texts=[content]
  1005. )
  1006. lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
  1007. with redis_client.lock(lock_name, timeout=600):
  1008. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1009. DocumentSegment.document_id == document.id
  1010. ).scalar()
  1011. segment_document = DocumentSegment(
  1012. tenant_id=current_user.current_tenant_id,
  1013. dataset_id=document.dataset_id,
  1014. document_id=document.id,
  1015. index_node_id=doc_id,
  1016. index_node_hash=segment_hash,
  1017. position=max_position + 1 if max_position else 1,
  1018. content=content,
  1019. word_count=len(content),
  1020. tokens=tokens,
  1021. status='completed',
  1022. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1023. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1024. created_by=current_user.id
  1025. )
  1026. if document.doc_form == 'qa_model':
  1027. segment_document.answer = args['answer']
  1028. db.session.add(segment_document)
  1029. db.session.commit()
  1030. # save vector index
  1031. try:
  1032. VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
  1033. except Exception as e:
  1034. logging.exception("create segment index failed")
  1035. segment_document.enabled = False
  1036. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1037. segment_document.status = 'error'
  1038. segment_document.error = str(e)
  1039. db.session.commit()
  1040. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
  1041. return segment
  1042. @classmethod
  1043. def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
  1044. lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
  1045. with redis_client.lock(lock_name, timeout=600):
  1046. embedding_model = None
  1047. if dataset.indexing_technique == 'high_quality':
  1048. model_manager = ModelManager()
  1049. embedding_model = model_manager.get_model_instance(
  1050. tenant_id=current_user.current_tenant_id,
  1051. provider=dataset.embedding_model_provider,
  1052. model_type=ModelType.TEXT_EMBEDDING,
  1053. model=dataset.embedding_model
  1054. )
  1055. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  1056. DocumentSegment.document_id == document.id
  1057. ).scalar()
  1058. pre_segment_data_list = []
  1059. segment_data_list = []
  1060. keywords_list = []
  1061. for segment_item in segments:
  1062. content = segment_item['content']
  1063. doc_id = str(uuid.uuid4())
  1064. segment_hash = helper.generate_text_hash(content)
  1065. tokens = 0
  1066. if dataset.indexing_technique == 'high_quality' and embedding_model:
  1067. # calc embedding use tokens
  1068. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1069. tokens = model_type_instance.get_num_tokens(
  1070. model=embedding_model.model,
  1071. credentials=embedding_model.credentials,
  1072. texts=[content]
  1073. )
  1074. segment_document = DocumentSegment(
  1075. tenant_id=current_user.current_tenant_id,
  1076. dataset_id=document.dataset_id,
  1077. document_id=document.id,
  1078. index_node_id=doc_id,
  1079. index_node_hash=segment_hash,
  1080. position=max_position + 1 if max_position else 1,
  1081. content=content,
  1082. word_count=len(content),
  1083. tokens=tokens,
  1084. status='completed',
  1085. indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1086. completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
  1087. created_by=current_user.id
  1088. )
  1089. if document.doc_form == 'qa_model':
  1090. segment_document.answer = segment_item['answer']
  1091. db.session.add(segment_document)
  1092. segment_data_list.append(segment_document)
  1093. pre_segment_data_list.append(segment_document)
  1094. keywords_list.append(segment_item['keywords'])
  1095. try:
  1096. # save vector index
  1097. VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
  1098. except Exception as e:
  1099. logging.exception("create segment index failed")
  1100. for segment_document in segment_data_list:
  1101. segment_document.enabled = False
  1102. segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1103. segment_document.status = 'error'
  1104. segment_document.error = str(e)
  1105. db.session.commit()
  1106. return segment_data_list
  1107. @classmethod
  1108. def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
  1109. indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
  1110. cache_result = redis_client.get(indexing_cache_key)
  1111. if cache_result is not None:
  1112. raise ValueError("Segment is indexing, please try again later")
  1113. if 'enabled' in args and args['enabled'] is not None:
  1114. action = args['enabled']
  1115. if segment.enabled != action:
  1116. if not action:
  1117. segment.enabled = action
  1118. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1119. segment.disabled_by = current_user.id
  1120. db.session.add(segment)
  1121. db.session.commit()
  1122. # Set cache to prevent indexing the same segment multiple times
  1123. redis_client.setex(indexing_cache_key, 600, 1)
  1124. disable_segment_from_index_task.delay(segment.id)
  1125. return segment
  1126. if not segment.enabled:
  1127. if 'enabled' in args and args['enabled'] is not None:
  1128. if not args['enabled']:
  1129. raise ValueError("Can't update disabled segment")
  1130. else:
  1131. raise ValueError("Can't update disabled segment")
  1132. try:
  1133. content = args['content']
  1134. if segment.content == content:
  1135. if document.doc_form == 'qa_model':
  1136. segment.answer = args['answer']
  1137. if args.get('keywords'):
  1138. segment.keywords = args['keywords']
  1139. segment.enabled = True
  1140. segment.disabled_at = None
  1141. segment.disabled_by = None
  1142. db.session.add(segment)
  1143. db.session.commit()
  1144. # update segment index task
  1145. if args['keywords']:
  1146. keyword = Keyword(dataset)
  1147. keyword.delete_by_ids([segment.index_node_id])
  1148. document = RAGDocument(
  1149. page_content=segment.content,
  1150. metadata={
  1151. "doc_id": segment.index_node_id,
  1152. "doc_hash": segment.index_node_hash,
  1153. "document_id": segment.document_id,
  1154. "dataset_id": segment.dataset_id,
  1155. }
  1156. )
  1157. keyword.add_texts([document], keywords_list=[args['keywords']])
  1158. else:
  1159. segment_hash = helper.generate_text_hash(content)
  1160. tokens = 0
  1161. if dataset.indexing_technique == 'high_quality':
  1162. model_manager = ModelManager()
  1163. embedding_model = model_manager.get_model_instance(
  1164. tenant_id=current_user.current_tenant_id,
  1165. provider=dataset.embedding_model_provider,
  1166. model_type=ModelType.TEXT_EMBEDDING,
  1167. model=dataset.embedding_model
  1168. )
  1169. # calc embedding use tokens
  1170. model_type_instance = cast(TextEmbeddingModel, embedding_model.model_type_instance)
  1171. tokens = model_type_instance.get_num_tokens(
  1172. model=embedding_model.model,
  1173. credentials=embedding_model.credentials,
  1174. texts=[content]
  1175. )
  1176. segment.content = content
  1177. segment.index_node_hash = segment_hash
  1178. segment.word_count = len(content)
  1179. segment.tokens = tokens
  1180. segment.status = 'completed'
  1181. segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1182. segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1183. segment.updated_by = current_user.id
  1184. segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1185. segment.enabled = True
  1186. segment.disabled_at = None
  1187. segment.disabled_by = None
  1188. if document.doc_form == 'qa_model':
  1189. segment.answer = args['answer']
  1190. db.session.add(segment)
  1191. db.session.commit()
  1192. # update segment vector index
  1193. VectorService.update_segment_vector(args['keywords'], segment, dataset)
  1194. except Exception as e:
  1195. logging.exception("update segment index failed")
  1196. segment.enabled = False
  1197. segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
  1198. segment.status = 'error'
  1199. segment.error = str(e)
  1200. db.session.commit()
  1201. segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
  1202. return segment
  1203. @classmethod
  1204. def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
  1205. indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
  1206. cache_result = redis_client.get(indexing_cache_key)
  1207. if cache_result is not None:
  1208. raise ValueError("Segment is deleting.")
  1209. # enabled segment need to delete index
  1210. if segment.enabled:
  1211. # send delete segment index task
  1212. redis_client.setex(indexing_cache_key, 600, 1)
  1213. delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
  1214. db.session.delete(segment)
  1215. db.session.commit()
  1216. class DatasetCollectionBindingService:
  1217. @classmethod
  1218. def get_dataset_collection_binding(cls, provider_name: str, model_name: str,
  1219. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1220. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1221. filter(DatasetCollectionBinding.provider_name == provider_name,
  1222. DatasetCollectionBinding.model_name == model_name,
  1223. DatasetCollectionBinding.type == collection_type). \
  1224. order_by(DatasetCollectionBinding.created_at). \
  1225. first()
  1226. if not dataset_collection_binding:
  1227. dataset_collection_binding = DatasetCollectionBinding(
  1228. provider_name=provider_name,
  1229. model_name=model_name,
  1230. collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
  1231. type=collection_type
  1232. )
  1233. db.session.add(dataset_collection_binding)
  1234. db.session.commit()
  1235. return dataset_collection_binding
  1236. @classmethod
  1237. def get_dataset_collection_binding_by_id_and_type(cls, collection_binding_id: str,
  1238. collection_type: str = 'dataset') -> DatasetCollectionBinding:
  1239. dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
  1240. filter(DatasetCollectionBinding.id == collection_binding_id,
  1241. DatasetCollectionBinding.type == collection_type). \
  1242. order_by(DatasetCollectionBinding.created_at). \
  1243. first()
  1244. return dataset_collection_binding