123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- import json
- from typing import Type
- import requests
- from langchain.embeddings import XinferenceEmbeddings
- from core.helper import encrypter
- from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
- from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
- from core.model_providers.models.llm.xinference_model import XinferenceModel
- from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
- from core.model_providers.models.base import BaseProviderModel
- from core.third_party.langchain.llms.xinference_llm import XinferenceLLM
- from models.provider import ProviderType
- class XinferenceProvider(BaseModelProvider):
- @property
- def provider_name(self):
- """
- Returns the name of a provider.
- """
- return 'xinference'
- def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
- return []
- def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
- """
- Returns the model class.
- :param model_type:
- :return:
- """
- if model_type == ModelType.TEXT_GENERATION:
- model_class = XinferenceModel
- elif model_type == ModelType.EMBEDDINGS:
- model_class = XinferenceEmbedding
- else:
- raise NotImplementedError
- return model_class
- def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules:
- """
- get model parameter rules.
- :param model_name:
- :param model_type:
- :return:
- """
- credentials = self.get_model_credentials(model_name, model_type)
- if credentials['model_format'] == "ggmlv3" and credentials["model_handle_type"] == "chatglm":
- return ModelKwargsRules(
- temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
- top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
- presence_penalty=KwargRule[float](enabled=False),
- frequency_penalty=KwargRule[float](enabled=False),
- max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
- )
- elif credentials['model_format'] == "ggmlv3":
- return ModelKwargsRules(
- temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
- top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
- presence_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
- frequency_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
- max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
- )
- else:
- return ModelKwargsRules(
- temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
- top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
- presence_penalty=KwargRule[float](enabled=False),
- frequency_penalty=KwargRule[float](enabled=False),
- max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
- )
- @classmethod
- def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
- """
- check model credentials valid.
- :param model_name:
- :param model_type:
- :param credentials:
- """
- if 'server_url' not in credentials:
- raise CredentialsValidateFailedError('Xinference Server URL must be provided.')
- if 'model_uid' not in credentials:
- raise CredentialsValidateFailedError('Xinference Model UID must be provided.')
- try:
- credential_kwargs = {
- 'server_url': credentials['server_url'],
- 'model_uid': credentials['model_uid'],
- }
- if model_type == ModelType.TEXT_GENERATION:
- llm = XinferenceLLM(
- **credential_kwargs
- )
- llm("ping")
- elif model_type == ModelType.EMBEDDINGS:
- embedding = XinferenceEmbeddings(
- **credential_kwargs
- )
- embedding.embed_query("ping")
- except Exception as ex:
- raise CredentialsValidateFailedError(str(ex))
- @classmethod
- def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
- credentials: dict) -> dict:
- """
- encrypt model credentials for save.
- :param tenant_id:
- :param model_name:
- :param model_type:
- :param credentials:
- :return:
- """
- if model_type == ModelType.TEXT_GENERATION:
- extra_credentials = cls._get_extra_credentials(credentials)
- credentials.update(extra_credentials)
- credentials['server_url'] = encrypter.encrypt_token(tenant_id, credentials['server_url'])
- return credentials
- def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
- """
- get credentials for llm use.
- :param model_name:
- :param model_type:
- :param obfuscated:
- :return:
- """
- if self.provider.provider_type != ProviderType.CUSTOM.value:
- raise NotImplementedError
- provider_model = self._get_provider_model(model_name, model_type)
- if not provider_model.encrypted_config:
- return {
- 'server_url': None,
- 'model_uid': None,
- }
- credentials = json.loads(provider_model.encrypted_config)
- if credentials['server_url']:
- credentials['server_url'] = encrypter.decrypt_token(
- self.provider.tenant_id,
- credentials['server_url']
- )
- if obfuscated:
- credentials['server_url'] = encrypter.obfuscated_token(credentials['server_url'])
- return credentials
- @classmethod
- def _get_extra_credentials(self, credentials: dict) -> dict:
- url = f"{credentials['server_url']}/v1/models/{credentials['model_uid']}"
- response = requests.get(url)
- if response.status_code != 200:
- raise RuntimeError(
- f"Failed to get the model description, detail: {response.json()['detail']}"
- )
- desc = response.json()
- extra_credentials = {
- 'model_format': desc['model_format'],
- }
- if desc["model_format"] == "ggmlv3" and "chatglm" in desc["model_name"]:
- extra_credentials['model_handle_type'] = 'chatglm'
- elif "generate" in desc["model_ability"]:
- extra_credentials['model_handle_type'] = 'generate'
- elif "chat" in desc["model_ability"]:
- extra_credentials['model_handle_type'] = 'chat'
- else:
- raise NotImplementedError(f"Model handle type not supported.")
- return extra_credentials
- @classmethod
- def is_provider_credentials_valid_or_raise(cls, credentials: dict):
- return
- @classmethod
- def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict:
- return {}
- def get_provider_credentials(self, obfuscated: bool = False) -> dict:
- return {}
|