xinference_provider.py 7.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. import json
  2. from typing import Type
  3. import requests
  4. from langchain.embeddings import XinferenceEmbeddings
  5. from core.helper import encrypter
  6. from core.model_providers.models.embedding.xinference_embedding import XinferenceEmbedding
  7. from core.model_providers.models.entity.model_params import KwargRule, ModelKwargsRules, ModelType
  8. from core.model_providers.models.llm.xinference_model import XinferenceModel
  9. from core.model_providers.providers.base import BaseModelProvider, CredentialsValidateFailedError
  10. from core.model_providers.models.base import BaseProviderModel
  11. from core.third_party.langchain.llms.xinference_llm import XinferenceLLM
  12. from models.provider import ProviderType
  13. class XinferenceProvider(BaseModelProvider):
  14. @property
  15. def provider_name(self):
  16. """
  17. Returns the name of a provider.
  18. """
  19. return 'xinference'
  20. def _get_fixed_model_list(self, model_type: ModelType) -> list[dict]:
  21. return []
  22. def get_model_class(self, model_type: ModelType) -> Type[BaseProviderModel]:
  23. """
  24. Returns the model class.
  25. :param model_type:
  26. :return:
  27. """
  28. if model_type == ModelType.TEXT_GENERATION:
  29. model_class = XinferenceModel
  30. elif model_type == ModelType.EMBEDDINGS:
  31. model_class = XinferenceEmbedding
  32. else:
  33. raise NotImplementedError
  34. return model_class
  35. def get_model_parameter_rules(self, model_name: str, model_type: ModelType) -> ModelKwargsRules:
  36. """
  37. get model parameter rules.
  38. :param model_name:
  39. :param model_type:
  40. :return:
  41. """
  42. credentials = self.get_model_credentials(model_name, model_type)
  43. if credentials['model_format'] == "ggmlv3" and credentials["model_handle_type"] == "chatglm":
  44. return ModelKwargsRules(
  45. temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
  46. top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
  47. presence_penalty=KwargRule[float](enabled=False),
  48. frequency_penalty=KwargRule[float](enabled=False),
  49. max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
  50. )
  51. elif credentials['model_format'] == "ggmlv3":
  52. return ModelKwargsRules(
  53. temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
  54. top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
  55. presence_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
  56. frequency_penalty=KwargRule[float](min=-2, max=2, default=0, precision=2),
  57. max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
  58. )
  59. else:
  60. return ModelKwargsRules(
  61. temperature=KwargRule[float](min=0.01, max=2, default=1, precision=2),
  62. top_p=KwargRule[float](min=0, max=1, default=0.7, precision=2),
  63. presence_penalty=KwargRule[float](enabled=False),
  64. frequency_penalty=KwargRule[float](enabled=False),
  65. max_tokens=KwargRule[int](min=10, max=4000, default=256, precision=0),
  66. )
  67. @classmethod
  68. def is_model_credentials_valid_or_raise(cls, model_name: str, model_type: ModelType, credentials: dict):
  69. """
  70. check model credentials valid.
  71. :param model_name:
  72. :param model_type:
  73. :param credentials:
  74. """
  75. if 'server_url' not in credentials:
  76. raise CredentialsValidateFailedError('Xinference Server URL must be provided.')
  77. if 'model_uid' not in credentials:
  78. raise CredentialsValidateFailedError('Xinference Model UID must be provided.')
  79. try:
  80. credential_kwargs = {
  81. 'server_url': credentials['server_url'],
  82. 'model_uid': credentials['model_uid'],
  83. }
  84. if model_type == ModelType.TEXT_GENERATION:
  85. llm = XinferenceLLM(
  86. **credential_kwargs
  87. )
  88. llm("ping")
  89. elif model_type == ModelType.EMBEDDINGS:
  90. embedding = XinferenceEmbeddings(
  91. **credential_kwargs
  92. )
  93. embedding.embed_query("ping")
  94. except Exception as ex:
  95. raise CredentialsValidateFailedError(str(ex))
  96. @classmethod
  97. def encrypt_model_credentials(cls, tenant_id: str, model_name: str, model_type: ModelType,
  98. credentials: dict) -> dict:
  99. """
  100. encrypt model credentials for save.
  101. :param tenant_id:
  102. :param model_name:
  103. :param model_type:
  104. :param credentials:
  105. :return:
  106. """
  107. if model_type == ModelType.TEXT_GENERATION:
  108. extra_credentials = cls._get_extra_credentials(credentials)
  109. credentials.update(extra_credentials)
  110. credentials['server_url'] = encrypter.encrypt_token(tenant_id, credentials['server_url'])
  111. return credentials
  112. def get_model_credentials(self, model_name: str, model_type: ModelType, obfuscated: bool = False) -> dict:
  113. """
  114. get credentials for llm use.
  115. :param model_name:
  116. :param model_type:
  117. :param obfuscated:
  118. :return:
  119. """
  120. if self.provider.provider_type != ProviderType.CUSTOM.value:
  121. raise NotImplementedError
  122. provider_model = self._get_provider_model(model_name, model_type)
  123. if not provider_model.encrypted_config:
  124. return {
  125. 'server_url': None,
  126. 'model_uid': None,
  127. }
  128. credentials = json.loads(provider_model.encrypted_config)
  129. if credentials['server_url']:
  130. credentials['server_url'] = encrypter.decrypt_token(
  131. self.provider.tenant_id,
  132. credentials['server_url']
  133. )
  134. if obfuscated:
  135. credentials['server_url'] = encrypter.obfuscated_token(credentials['server_url'])
  136. return credentials
  137. @classmethod
  138. def _get_extra_credentials(self, credentials: dict) -> dict:
  139. url = f"{credentials['server_url']}/v1/models/{credentials['model_uid']}"
  140. response = requests.get(url)
  141. if response.status_code != 200:
  142. raise RuntimeError(
  143. f"Failed to get the model description, detail: {response.json()['detail']}"
  144. )
  145. desc = response.json()
  146. extra_credentials = {
  147. 'model_format': desc['model_format'],
  148. }
  149. if desc["model_format"] == "ggmlv3" and "chatglm" in desc["model_name"]:
  150. extra_credentials['model_handle_type'] = 'chatglm'
  151. elif "generate" in desc["model_ability"]:
  152. extra_credentials['model_handle_type'] = 'generate'
  153. elif "chat" in desc["model_ability"]:
  154. extra_credentials['model_handle_type'] = 'chat'
  155. else:
  156. raise NotImplementedError(f"Model handle type not supported.")
  157. return extra_credentials
  158. @classmethod
  159. def is_provider_credentials_valid_or_raise(cls, credentials: dict):
  160. return
  161. @classmethod
  162. def encrypt_provider_credentials(cls, tenant_id: str, credentials: dict) -> dict:
  163. return {}
  164. def get_provider_credentials(self, obfuscated: bool = False) -> dict:
  165. return {}