indexing_runner.py 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469
  1. import datetime
  2. import json
  3. import re
  4. import tempfile
  5. import time
  6. from pathlib import Path
  7. from typing import Optional, List
  8. from langchain.text_splitter import RecursiveCharacterTextSplitter
  9. from llama_index import SimpleDirectoryReader
  10. from llama_index.data_structs import Node
  11. from llama_index.data_structs.node_v2 import DocumentRelationship
  12. from llama_index.node_parser import SimpleNodeParser, NodeParser
  13. from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
  14. from llama_index.readers.file.markdown_parser import MarkdownParser
  15. from core.index.readers.xlsx_parser import XLSXParser
  16. from core.docstore.dataset_docstore import DatesetDocumentStore
  17. from core.index.keyword_table_index import KeywordTableIndex
  18. from core.index.readers.html_parser import HTMLParser
  19. from core.index.readers.markdown_parser import MarkdownParser
  20. from core.index.readers.pdf_parser import PDFParser
  21. from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
  22. from core.index.vector_index import VectorIndex
  23. from core.llm.token_calculator import TokenCalculator
  24. from extensions.ext_database import db
  25. from extensions.ext_redis import redis_client
  26. from extensions.ext_storage import storage
  27. from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
  28. from models.model import UploadFile
  29. class IndexingRunner:
  30. def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
  31. self.storage = storage
  32. self.embedding_model_name = embedding_model_name
  33. def run(self, document: Document):
  34. """Run the indexing process."""
  35. # get dataset
  36. dataset = Dataset.query.filter_by(
  37. id=document.dataset_id
  38. ).first()
  39. if not dataset:
  40. raise ValueError("no dataset found")
  41. # load file
  42. text_docs = self._load_data(document)
  43. # get the process rule
  44. processing_rule = db.session.query(DatasetProcessRule). \
  45. filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
  46. first()
  47. # get node parser for splitting
  48. node_parser = self._get_node_parser(processing_rule)
  49. # split to nodes
  50. nodes = self._step_split(
  51. text_docs=text_docs,
  52. node_parser=node_parser,
  53. dataset=dataset,
  54. document=document,
  55. processing_rule=processing_rule
  56. )
  57. # build index
  58. self._build_index(
  59. dataset=dataset,
  60. document=document,
  61. nodes=nodes
  62. )
  63. def run_in_splitting_status(self, document: Document):
  64. """Run the indexing process when the index_status is splitting."""
  65. # get dataset
  66. dataset = Dataset.query.filter_by(
  67. id=document.dataset_id
  68. ).first()
  69. if not dataset:
  70. raise ValueError("no dataset found")
  71. # get exist document_segment list and delete
  72. document_segments = DocumentSegment.query.filter_by(
  73. dataset_id=dataset.id,
  74. document_id=document.id
  75. ).all()
  76. db.session.delete(document_segments)
  77. db.session.commit()
  78. # load file
  79. text_docs = self._load_data(document)
  80. # get the process rule
  81. processing_rule = db.session.query(DatasetProcessRule). \
  82. filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
  83. first()
  84. # get node parser for splitting
  85. node_parser = self._get_node_parser(processing_rule)
  86. # split to nodes
  87. nodes = self._step_split(
  88. text_docs=text_docs,
  89. node_parser=node_parser,
  90. dataset=dataset,
  91. document=document,
  92. processing_rule=processing_rule
  93. )
  94. # build index
  95. self._build_index(
  96. dataset=dataset,
  97. document=document,
  98. nodes=nodes
  99. )
  100. def run_in_indexing_status(self, document: Document):
  101. """Run the indexing process when the index_status is indexing."""
  102. # get dataset
  103. dataset = Dataset.query.filter_by(
  104. id=document.dataset_id
  105. ).first()
  106. if not dataset:
  107. raise ValueError("no dataset found")
  108. # get exist document_segment list and delete
  109. document_segments = DocumentSegment.query.filter_by(
  110. dataset_id=dataset.id,
  111. document_id=document.id
  112. ).all()
  113. nodes = []
  114. if document_segments:
  115. for document_segment in document_segments:
  116. # transform segment to node
  117. if document_segment.status != "completed":
  118. relationships = {
  119. DocumentRelationship.SOURCE: document_segment.document_id,
  120. }
  121. previous_segment = document_segment.previous_segment
  122. if previous_segment:
  123. relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
  124. next_segment = document_segment.next_segment
  125. if next_segment:
  126. relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
  127. node = Node(
  128. doc_id=document_segment.index_node_id,
  129. doc_hash=document_segment.index_node_hash,
  130. text=document_segment.content,
  131. extra_info=None,
  132. node_info=None,
  133. relationships=relationships
  134. )
  135. nodes.append(node)
  136. # build index
  137. self._build_index(
  138. dataset=dataset,
  139. document=document,
  140. nodes=nodes
  141. )
  142. def indexing_estimate(self, file_detail: UploadFile, tmp_processing_rule: dict) -> dict:
  143. """
  144. Estimate the indexing for the document.
  145. """
  146. # load data from file
  147. text_docs = self._load_data_from_file(file_detail)
  148. processing_rule = DatasetProcessRule(
  149. mode=tmp_processing_rule["mode"],
  150. rules=json.dumps(tmp_processing_rule["rules"])
  151. )
  152. # get node parser for splitting
  153. node_parser = self._get_node_parser(processing_rule)
  154. # split to nodes
  155. nodes = self._split_to_nodes(
  156. text_docs=text_docs,
  157. node_parser=node_parser,
  158. processing_rule=processing_rule
  159. )
  160. tokens = 0
  161. preview_texts = []
  162. for node in nodes:
  163. if len(preview_texts) < 5:
  164. preview_texts.append(node.get_text())
  165. tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
  166. return {
  167. "total_segments": len(nodes),
  168. "tokens": tokens,
  169. "total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
  170. "currency": TokenCalculator.get_currency(self.embedding_model_name),
  171. "preview": preview_texts
  172. }
  173. def _load_data(self, document: Document) -> List[Document]:
  174. # load file
  175. if document.data_source_type != "upload_file":
  176. return []
  177. data_source_info = document.data_source_info_dict
  178. if not data_source_info or 'upload_file_id' not in data_source_info:
  179. raise ValueError("no upload file found")
  180. file_detail = db.session.query(UploadFile). \
  181. filter(UploadFile.id == data_source_info['upload_file_id']). \
  182. one_or_none()
  183. text_docs = self._load_data_from_file(file_detail)
  184. # update document status to splitting
  185. self._update_document_index_status(
  186. document_id=document.id,
  187. after_indexing_status="splitting",
  188. extra_update_params={
  189. Document.file_id: file_detail.id,
  190. Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
  191. Document.parsing_completed_at: datetime.datetime.utcnow()
  192. }
  193. )
  194. # replace doc id to document model id
  195. for text_doc in text_docs:
  196. # remove invalid symbol
  197. text_doc.text = self.filter_string(text_doc.get_text())
  198. text_doc.doc_id = document.id
  199. return text_docs
  200. def filter_string(self, text):
  201. pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
  202. return pattern.sub('', text)
  203. def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
  204. with tempfile.TemporaryDirectory() as temp_dir:
  205. suffix = Path(upload_file.key).suffix
  206. filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
  207. self.storage.download(upload_file.key, filepath)
  208. file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
  209. file_extractor[".markdown"] = MarkdownParser()
  210. file_extractor[".md"] = MarkdownParser()
  211. file_extractor[".html"] = HTMLParser()
  212. file_extractor[".htm"] = HTMLParser()
  213. file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
  214. file_extractor[".xlsx"] = XLSXParser()
  215. loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
  216. text_docs = loader.load_data()
  217. return text_docs
  218. def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
  219. """
  220. Get the NodeParser object according to the processing rule.
  221. """
  222. if processing_rule.mode == "custom":
  223. # The user-defined segmentation rule
  224. rules = json.loads(processing_rule.rules)
  225. segmentation = rules["segmentation"]
  226. if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
  227. raise ValueError("Custom segment length should be between 50 and 1000.")
  228. separator = segmentation["separator"]
  229. if separator:
  230. separator = separator.replace('\\n', '\n')
  231. character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
  232. chunk_size=segmentation["max_tokens"],
  233. chunk_overlap=0,
  234. fixed_separator=separator,
  235. separators=["\n\n", "。", ".", " ", ""]
  236. )
  237. else:
  238. # Automatic segmentation
  239. character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
  240. chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
  241. chunk_overlap=0,
  242. separators=["\n\n", "。", ".", " ", ""]
  243. )
  244. return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
  245. def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
  246. dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
  247. """
  248. Split the text documents into nodes and save them to the document segment.
  249. """
  250. nodes = self._split_to_nodes(
  251. text_docs=text_docs,
  252. node_parser=node_parser,
  253. processing_rule=processing_rule
  254. )
  255. # save node to document segment
  256. doc_store = DatesetDocumentStore(
  257. dataset=dataset,
  258. user_id=document.created_by,
  259. embedding_model_name=self.embedding_model_name,
  260. document_id=document.id
  261. )
  262. doc_store.add_documents(nodes)
  263. # update document status to indexing
  264. cur_time = datetime.datetime.utcnow()
  265. self._update_document_index_status(
  266. document_id=document.id,
  267. after_indexing_status="indexing",
  268. extra_update_params={
  269. Document.cleaning_completed_at: cur_time,
  270. Document.splitting_completed_at: cur_time,
  271. }
  272. )
  273. # update segment status to indexing
  274. self._update_segments_by_document(
  275. document_id=document.id,
  276. update_params={
  277. DocumentSegment.status: "indexing",
  278. DocumentSegment.indexing_at: datetime.datetime.utcnow()
  279. }
  280. )
  281. return nodes
  282. def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
  283. processing_rule: DatasetProcessRule) -> List[Node]:
  284. """
  285. Split the text documents into nodes.
  286. """
  287. all_nodes = []
  288. for text_doc in text_docs:
  289. # document clean
  290. document_text = self._document_clean(text_doc.get_text(), processing_rule)
  291. text_doc.text = document_text
  292. # parse document to nodes
  293. nodes = node_parser.get_nodes_from_documents([text_doc])
  294. nodes = [node for node in nodes if node.text is not None and node.text.strip()]
  295. all_nodes.extend(nodes)
  296. return all_nodes
  297. def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
  298. """
  299. Clean the document text according to the processing rules.
  300. """
  301. if processing_rule.mode == "automatic":
  302. rules = DatasetProcessRule.AUTOMATIC_RULES
  303. else:
  304. rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
  305. if 'pre_processing_rules' in rules:
  306. pre_processing_rules = rules["pre_processing_rules"]
  307. for pre_processing_rule in pre_processing_rules:
  308. if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
  309. # Remove extra spaces
  310. pattern = r'\n{3,}'
  311. text = re.sub(pattern, '\n\n', text)
  312. pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
  313. text = re.sub(pattern, ' ', text)
  314. elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
  315. # Remove email
  316. pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
  317. text = re.sub(pattern, '', text)
  318. # Remove URL
  319. pattern = r'https?://[^\s]+'
  320. text = re.sub(pattern, '', text)
  321. return text
  322. def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
  323. """
  324. Build the index for the document.
  325. """
  326. vector_index = VectorIndex(dataset=dataset)
  327. keyword_table_index = KeywordTableIndex(dataset=dataset)
  328. # chunk nodes by chunk size
  329. indexing_start_at = time.perf_counter()
  330. tokens = 0
  331. chunk_size = 100
  332. for i in range(0, len(nodes), chunk_size):
  333. # check document is paused
  334. self._check_document_paused_status(document.id)
  335. chunk_nodes = nodes[i:i + chunk_size]
  336. tokens += sum(
  337. TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
  338. )
  339. # save vector index
  340. if dataset.indexing_technique == "high_quality":
  341. vector_index.add_nodes(chunk_nodes)
  342. # save keyword index
  343. keyword_table_index.add_nodes(chunk_nodes)
  344. node_ids = [node.doc_id for node in chunk_nodes]
  345. db.session.query(DocumentSegment).filter(
  346. DocumentSegment.document_id == document.id,
  347. DocumentSegment.index_node_id.in_(node_ids),
  348. DocumentSegment.status == "indexing"
  349. ).update({
  350. DocumentSegment.status: "completed",
  351. DocumentSegment.completed_at: datetime.datetime.utcnow()
  352. })
  353. db.session.commit()
  354. indexing_end_at = time.perf_counter()
  355. # update document status to completed
  356. self._update_document_index_status(
  357. document_id=document.id,
  358. after_indexing_status="completed",
  359. extra_update_params={
  360. Document.tokens: tokens,
  361. Document.completed_at: datetime.datetime.utcnow(),
  362. Document.indexing_latency: indexing_end_at - indexing_start_at,
  363. }
  364. )
  365. def _check_document_paused_status(self, document_id: str):
  366. indexing_cache_key = 'document_{}_is_paused'.format(document_id)
  367. result = redis_client.get(indexing_cache_key)
  368. if result:
  369. raise DocumentIsPausedException()
  370. def _update_document_index_status(self, document_id: str, after_indexing_status: str,
  371. extra_update_params: Optional[dict] = None) -> None:
  372. """
  373. Update the document indexing status.
  374. """
  375. count = Document.query.filter_by(id=document_id, is_paused=True).count()
  376. if count > 0:
  377. raise DocumentIsPausedException()
  378. update_params = {
  379. Document.indexing_status: after_indexing_status
  380. }
  381. if extra_update_params:
  382. update_params.update(extra_update_params)
  383. Document.query.filter_by(id=document_id).update(update_params)
  384. db.session.commit()
  385. def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
  386. """
  387. Update the document segment by document id.
  388. """
  389. DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
  390. db.session.commit()
  391. class DocumentIsPausedException(Exception):
  392. pass