web_reader_tool.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357
  1. import hashlib
  2. import json
  3. import mimetypes
  4. import os
  5. import re
  6. import site
  7. import subprocess
  8. import tempfile
  9. import unicodedata
  10. from contextlib import contextmanager
  11. from pathlib import Path
  12. from urllib.parse import unquote
  13. import chardet
  14. import cloudscraper
  15. from bs4 import BeautifulSoup, CData, Comment, NavigableString
  16. from regex import regex
  17. from core.helper import ssrf_proxy
  18. from core.rag.extractor import extract_processor
  19. from core.rag.extractor.extract_processor import ExtractProcessor
  20. FULL_TEMPLATE = """
  21. TITLE: {title}
  22. AUTHORS: {authors}
  23. PUBLISH DATE: {publish_date}
  24. TOP_IMAGE_URL: {top_image}
  25. TEXT:
  26. {text}
  27. """
  28. def page_result(text: str, cursor: int, max_length: int) -> str:
  29. """Page through `text` and return a substring of `max_length` characters starting from `cursor`."""
  30. return text[cursor : cursor + max_length]
  31. def get_url(url: str, user_agent: str = None) -> str:
  32. """Fetch URL and return the contents as a string."""
  33. headers = {
  34. "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)"
  35. " Chrome/91.0.4472.124 Safari/537.36"
  36. }
  37. if user_agent:
  38. headers["User-Agent"] = user_agent
  39. main_content_type = None
  40. supported_content_types = extract_processor.SUPPORT_URL_CONTENT_TYPES + ["text/html"]
  41. response = ssrf_proxy.head(url, headers=headers, follow_redirects=True, timeout=(5, 10))
  42. if response.status_code == 200:
  43. # check content-type
  44. content_type = response.headers.get("Content-Type")
  45. if content_type:
  46. main_content_type = response.headers.get("Content-Type").split(";")[0].strip()
  47. else:
  48. content_disposition = response.headers.get("Content-Disposition", "")
  49. filename_match = re.search(r'filename="([^"]+)"', content_disposition)
  50. if filename_match:
  51. filename = unquote(filename_match.group(1))
  52. extension = re.search(r"\.(\w+)$", filename)
  53. if extension:
  54. main_content_type = mimetypes.guess_type(filename)[0]
  55. if main_content_type not in supported_content_types:
  56. return "Unsupported content-type [{}] of URL.".format(main_content_type)
  57. if main_content_type in extract_processor.SUPPORT_URL_CONTENT_TYPES:
  58. return ExtractProcessor.load_from_url(url, return_text=True)
  59. response = ssrf_proxy.get(url, headers=headers, follow_redirects=True, timeout=(120, 300))
  60. elif response.status_code == 403:
  61. scraper = cloudscraper.create_scraper()
  62. scraper.perform_request = ssrf_proxy.make_request
  63. response = scraper.get(url, headers=headers, follow_redirects=True, timeout=(120, 300))
  64. if response.status_code != 200:
  65. return "URL returned status code {}.".format(response.status_code)
  66. # Detect encoding using chardet
  67. detected_encoding = chardet.detect(response.content)
  68. encoding = detected_encoding["encoding"]
  69. if encoding:
  70. try:
  71. content = response.content.decode(encoding)
  72. except (UnicodeDecodeError, TypeError):
  73. content = response.text
  74. else:
  75. content = response.text
  76. a = extract_using_readabilipy(content)
  77. if not a["plain_text"] or not a["plain_text"].strip():
  78. return ""
  79. res = FULL_TEMPLATE.format(
  80. title=a["title"],
  81. authors=a["byline"],
  82. publish_date=a["date"],
  83. top_image="",
  84. text=a["plain_text"] or "",
  85. )
  86. return res
  87. def extract_using_readabilipy(html):
  88. with tempfile.NamedTemporaryFile(delete=False, mode="w+") as f_html:
  89. f_html.write(html)
  90. f_html.close()
  91. html_path = f_html.name
  92. # Call Mozilla's Readability.js Readability.parse() function via node, writing output to a temporary file
  93. article_json_path = html_path + ".json"
  94. jsdir = os.path.join(find_module_path("readabilipy"), "javascript")
  95. with chdir(jsdir):
  96. subprocess.check_call(["node", "ExtractArticle.js", "-i", html_path, "-o", article_json_path])
  97. # Read output of call to Readability.parse() from JSON file and return as Python dictionary
  98. input_json = json.loads(Path(article_json_path).read_text(encoding="utf-8"))
  99. # Deleting files after processing
  100. os.unlink(article_json_path)
  101. os.unlink(html_path)
  102. article_json = {
  103. "title": None,
  104. "byline": None,
  105. "date": None,
  106. "content": None,
  107. "plain_content": None,
  108. "plain_text": None,
  109. }
  110. # Populate article fields from readability fields where present
  111. if input_json:
  112. if input_json.get("title"):
  113. article_json["title"] = input_json["title"]
  114. if input_json.get("byline"):
  115. article_json["byline"] = input_json["byline"]
  116. if input_json.get("date"):
  117. article_json["date"] = input_json["date"]
  118. if input_json.get("content"):
  119. article_json["content"] = input_json["content"]
  120. article_json["plain_content"] = plain_content(article_json["content"], False, False)
  121. article_json["plain_text"] = extract_text_blocks_as_plain_text(article_json["plain_content"])
  122. if input_json.get("textContent"):
  123. article_json["plain_text"] = input_json["textContent"]
  124. article_json["plain_text"] = re.sub(r"\n\s*\n", "\n", article_json["plain_text"])
  125. return article_json
  126. def find_module_path(module_name):
  127. for package_path in site.getsitepackages():
  128. potential_path = os.path.join(package_path, module_name)
  129. if os.path.exists(potential_path):
  130. return potential_path
  131. return None
  132. @contextmanager
  133. def chdir(path):
  134. """Change directory in context and return to original on exit"""
  135. # From https://stackoverflow.com/a/37996581, couldn't find a built-in
  136. original_path = os.getcwd()
  137. os.chdir(path)
  138. try:
  139. yield
  140. finally:
  141. os.chdir(original_path)
  142. def extract_text_blocks_as_plain_text(paragraph_html):
  143. # Load article as DOM
  144. soup = BeautifulSoup(paragraph_html, "html.parser")
  145. # Select all lists
  146. list_elements = soup.find_all(["ul", "ol"])
  147. # Prefix text in all list items with "* " and make lists paragraphs
  148. for list_element in list_elements:
  149. plain_items = "".join(
  150. list(filter(None, [plain_text_leaf_node(li)["text"] for li in list_element.find_all("li")]))
  151. )
  152. list_element.string = plain_items
  153. list_element.name = "p"
  154. # Select all text blocks
  155. text_blocks = [s.parent for s in soup.find_all(string=True)]
  156. text_blocks = [plain_text_leaf_node(block) for block in text_blocks]
  157. # Drop empty paragraphs
  158. text_blocks = list(filter(lambda p: p["text"] is not None, text_blocks))
  159. return text_blocks
  160. def plain_text_leaf_node(element):
  161. # Extract all text, stripped of any child HTML elements and normalize it
  162. plain_text = normalize_text(element.get_text())
  163. if plain_text != "" and element.name == "li":
  164. plain_text = "* {}, ".format(plain_text)
  165. if plain_text == "":
  166. plain_text = None
  167. if "data-node-index" in element.attrs:
  168. plain = {"node_index": element["data-node-index"], "text": plain_text}
  169. else:
  170. plain = {"text": plain_text}
  171. return plain
  172. def plain_content(readability_content, content_digests, node_indexes):
  173. # Load article as DOM
  174. soup = BeautifulSoup(readability_content, "html.parser")
  175. # Make all elements plain
  176. elements = plain_elements(soup.contents, content_digests, node_indexes)
  177. if node_indexes:
  178. # Add node index attributes to nodes
  179. elements = [add_node_indexes(element) for element in elements]
  180. # Replace article contents with plain elements
  181. soup.contents = elements
  182. return str(soup)
  183. def plain_elements(elements, content_digests, node_indexes):
  184. # Get plain content versions of all elements
  185. elements = [plain_element(element, content_digests, node_indexes) for element in elements]
  186. if content_digests:
  187. # Add content digest attribute to nodes
  188. elements = [add_content_digest(element) for element in elements]
  189. return elements
  190. def plain_element(element, content_digests, node_indexes):
  191. # For lists, we make each item plain text
  192. if is_leaf(element):
  193. # For leaf node elements, extract the text content, discarding any HTML tags
  194. # 1. Get element contents as text
  195. plain_text = element.get_text()
  196. # 2. Normalize the extracted text string to a canonical representation
  197. plain_text = normalize_text(plain_text)
  198. # 3. Update element content to be plain text
  199. element.string = plain_text
  200. elif is_text(element):
  201. if is_non_printing(element):
  202. # The simplified HTML may have come from Readability.js so might
  203. # have non-printing text (e.g. Comment or CData). In this case, we
  204. # keep the structure, but ensure that the string is empty.
  205. element = type(element)("")
  206. else:
  207. plain_text = element.string
  208. plain_text = normalize_text(plain_text)
  209. element = type(element)(plain_text)
  210. else:
  211. # If not a leaf node or leaf type call recursively on child nodes, replacing
  212. element.contents = plain_elements(element.contents, content_digests, node_indexes)
  213. return element
  214. def add_node_indexes(element, node_index="0"):
  215. # Can't add attributes to string types
  216. if is_text(element):
  217. return element
  218. # Add index to current element
  219. element["data-node-index"] = node_index
  220. # Add index to child elements
  221. for local_idx, child in enumerate([c for c in element.contents if not is_text(c)], start=1):
  222. # Can't add attributes to leaf string types
  223. child_index = "{stem}.{local}".format(stem=node_index, local=local_idx)
  224. add_node_indexes(child, node_index=child_index)
  225. return element
  226. def normalize_text(text):
  227. """Normalize unicode and whitespace."""
  228. # Normalize unicode first to try and standardize whitespace characters as much as possible before normalizing them
  229. text = strip_control_characters(text)
  230. text = normalize_unicode(text)
  231. text = normalize_whitespace(text)
  232. return text
  233. def strip_control_characters(text):
  234. """Strip out unicode control characters which might break the parsing."""
  235. # Unicode control characters
  236. # [Cc]: Other, Control [includes new lines]
  237. # [Cf]: Other, Format
  238. # [Cn]: Other, Not Assigned
  239. # [Co]: Other, Private Use
  240. # [Cs]: Other, Surrogate
  241. control_chars = {"Cc", "Cf", "Cn", "Co", "Cs"}
  242. retained_chars = ["\t", "\n", "\r", "\f"]
  243. # Remove non-printing control characters
  244. return "".join(
  245. [
  246. "" if (unicodedata.category(char) in control_chars) and (char not in retained_chars) else char
  247. for char in text
  248. ]
  249. )
  250. def normalize_unicode(text):
  251. """Normalize unicode such that things that are visually equivalent map to the same unicode string where possible."""
  252. normal_form = "NFKC"
  253. text = unicodedata.normalize(normal_form, text)
  254. return text
  255. def normalize_whitespace(text):
  256. """Replace runs of whitespace characters with a single space as this is what happens when HTML text is displayed."""
  257. text = regex.sub(r"\s+", " ", text)
  258. # Remove leading and trailing whitespace
  259. text = text.strip()
  260. return text
  261. def is_leaf(element):
  262. return element.name in ["p", "li"]
  263. def is_text(element):
  264. return isinstance(element, NavigableString)
  265. def is_non_printing(element):
  266. return any(isinstance(element, _e) for _e in [Comment, CData])
  267. def add_content_digest(element):
  268. if not is_text(element):
  269. element["data-content-digest"] = content_digest(element)
  270. return element
  271. def content_digest(element):
  272. if is_text(element):
  273. # Hash
  274. trimmed_string = element.string.strip()
  275. if trimmed_string == "":
  276. digest = ""
  277. else:
  278. digest = hashlib.sha256(trimmed_string.encode("utf-8")).hexdigest()
  279. else:
  280. contents = element.contents
  281. num_contents = len(contents)
  282. if num_contents == 0:
  283. # No hash when no child elements exist
  284. digest = ""
  285. elif num_contents == 1:
  286. # If single child, use digest of child
  287. digest = content_digest(contents[0])
  288. else:
  289. # Build content digest from the "non-empty" digests of child nodes
  290. digest = hashlib.sha256()
  291. child_digests = list(filter(lambda x: x != "", [content_digest(content) for content in contents]))
  292. for child in child_digests:
  293. digest.update(child.encode("utf-8"))
  294. digest = digest.hexdigest()
  295. return digest