dataset.ts 3.5 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. const translation = {
  2. knowledge: 'Knowledge',
  3. documentCount: ' docs',
  4. wordCount: ' k words',
  5. appCount: ' linked apps',
  6. createDataset: 'Create Knowledge',
  7. createDatasetIntro: 'Import your own text data or write data in real-time via Webhook for LLM context enhancement.',
  8. deleteDatasetConfirmTitle: 'Delete this Knowledge?',
  9. deleteDatasetConfirmContent:
  10. 'Deleting the Knowledge is irreversible. Users will no longer be able to access your Knowledge, and all prompt configurations and logs will be permanently deleted.',
  11. datasetUsedByApp: 'The knowledge is being used by some apps. Apps will no longer be able to use this Knowledge, and all prompt configurations and logs will be permanently deleted.',
  12. datasetDeleted: 'Knowledge deleted',
  13. datasetDeleteFailed: 'Failed to delete Knowledge',
  14. didYouKnow: 'Did you know?',
  15. intro1: 'The Knowledge can be integrated into the Dify application ',
  16. intro2: 'as a context',
  17. intro3: ',',
  18. intro4: 'or it ',
  19. intro5: 'can be created',
  20. intro6: ' as a standalone ChatGPT index plug-in to publish',
  21. unavailable: 'Unavailable',
  22. unavailableTip: 'Embedding model is not available, the default embedding model needs to be configured',
  23. datasets: 'KNOWLEDGE',
  24. datasetsApi: 'API ACCESS',
  25. retrieval: {
  26. semantic_search: {
  27. title: 'Vector Search',
  28. description: 'Generate query embeddings and search for the text chunk most similar to its vector representation.',
  29. },
  30. full_text_search: {
  31. title: 'Full-Text Search',
  32. description: 'Index all terms in the document, allowing users to search any term and retrieve relevant text chunk containing those terms.',
  33. },
  34. hybrid_search: {
  35. title: 'Hybrid Search',
  36. description: 'Execute full-text search and vector searches simultaneously, re-rank to select the best match for the user\'s query. Users can choose to set weights or configure to a Rerank model.',
  37. recommend: 'Recommend',
  38. },
  39. invertedIndex: {
  40. title: 'Inverted Index',
  41. description: 'Inverted Index is a structure used for efficient retrieval. Organized by terms, each term points to documents or web pages containing it.',
  42. },
  43. change: 'Change',
  44. changeRetrievalMethod: 'Change retrieval method',
  45. },
  46. docsFailedNotice: 'documents failed to be indexed',
  47. retry: 'Retry',
  48. indexingTechnique: {
  49. high_quality: 'HQ',
  50. economy: 'ECO',
  51. },
  52. indexingMethod: {
  53. semantic_search: 'VECTOR',
  54. full_text_search: 'FULL TEXT',
  55. hybrid_search: 'HYBRID',
  56. invertedIndex: 'INVERTED',
  57. },
  58. mixtureHighQualityAndEconomicTip: 'The Rerank model is required for mixture of high quality and economical knowledge bases.',
  59. inconsistentEmbeddingModelTip: 'The Rerank model is required if the Embedding models of the selected knowledge bases are inconsistent.',
  60. retrievalSettings: 'Retrieval Setting',
  61. rerankSettings: 'Rerank Setting',
  62. weightedScore: {
  63. title: 'Weighted Score',
  64. description: 'By adjusting the weights assigned, this rerank strategy determines whether to prioritize semantic or keyword matching.',
  65. semanticFirst: 'Semantic first',
  66. keywordFirst: 'Keyword first',
  67. customized: 'Customized',
  68. semantic: 'Semantic',
  69. keyword: 'Keyword',
  70. },
  71. nTo1RetrievalLegacy: 'N-to-1 retrieval will be officially deprecated from September. It is recommended to use the latest Multi-path retrieval to obtain better results. ',
  72. nTo1RetrievalLegacyLink: 'Learn more',
  73. nTo1RetrievalLegacyLinkText: ' N-to-1 retrieval will be officially deprecated in September.',
  74. }
  75. export default translation