logging_callback.py 5.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. import json
  2. import logging
  3. import sys
  4. from typing import Optional
  5. from core.model_runtime.callbacks.base_callback import Callback
  6. from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
  7. from core.model_runtime.entities.message_entities import PromptMessage, PromptMessageTool
  8. from core.model_runtime.model_providers.__base.ai_model import AIModel
  9. logger = logging.getLogger(__name__)
  10. class LoggingCallback(Callback):
  11. def on_before_invoke(
  12. self,
  13. llm_instance: AIModel,
  14. model: str,
  15. credentials: dict,
  16. prompt_messages: list[PromptMessage],
  17. model_parameters: dict,
  18. tools: Optional[list[PromptMessageTool]] = None,
  19. stop: Optional[list[str]] = None,
  20. stream: bool = True,
  21. user: Optional[str] = None,
  22. ) -> None:
  23. """
  24. Before invoke callback
  25. :param llm_instance: LLM instance
  26. :param model: model name
  27. :param credentials: model credentials
  28. :param prompt_messages: prompt messages
  29. :param model_parameters: model parameters
  30. :param tools: tools for tool calling
  31. :param stop: stop words
  32. :param stream: is stream response
  33. :param user: unique user id
  34. """
  35. self.print_text("\n[on_llm_before_invoke]\n", color="blue")
  36. self.print_text(f"Model: {model}\n", color="blue")
  37. self.print_text("Parameters:\n", color="blue")
  38. for key, value in model_parameters.items():
  39. self.print_text(f"\t{key}: {value}\n", color="blue")
  40. if stop:
  41. self.print_text(f"\tstop: {stop}\n", color="blue")
  42. if tools:
  43. self.print_text("\tTools:\n", color="blue")
  44. for tool in tools:
  45. self.print_text(f"\t\t{tool.name}\n", color="blue")
  46. self.print_text(f"Stream: {stream}\n", color="blue")
  47. if user:
  48. self.print_text(f"User: {user}\n", color="blue")
  49. self.print_text("Prompt messages:\n", color="blue")
  50. for prompt_message in prompt_messages:
  51. if prompt_message.name:
  52. self.print_text(f"\tname: {prompt_message.name}\n", color="blue")
  53. self.print_text(f"\trole: {prompt_message.role.value}\n", color="blue")
  54. self.print_text(f"\tcontent: {prompt_message.content}\n", color="blue")
  55. if stream:
  56. self.print_text("\n[on_llm_new_chunk]")
  57. def on_new_chunk(
  58. self,
  59. llm_instance: AIModel,
  60. chunk: LLMResultChunk,
  61. model: str,
  62. credentials: dict,
  63. prompt_messages: list[PromptMessage],
  64. model_parameters: dict,
  65. tools: Optional[list[PromptMessageTool]] = None,
  66. stop: Optional[list[str]] = None,
  67. stream: bool = True,
  68. user: Optional[str] = None,
  69. ):
  70. """
  71. On new chunk callback
  72. :param llm_instance: LLM instance
  73. :param chunk: chunk
  74. :param model: model name
  75. :param credentials: model credentials
  76. :param prompt_messages: prompt messages
  77. :param model_parameters: model parameters
  78. :param tools: tools for tool calling
  79. :param stop: stop words
  80. :param stream: is stream response
  81. :param user: unique user id
  82. """
  83. sys.stdout.write(chunk.delta.message.content)
  84. sys.stdout.flush()
  85. def on_after_invoke(
  86. self,
  87. llm_instance: AIModel,
  88. result: LLMResult,
  89. model: str,
  90. credentials: dict,
  91. prompt_messages: list[PromptMessage],
  92. model_parameters: dict,
  93. tools: Optional[list[PromptMessageTool]] = None,
  94. stop: Optional[list[str]] = None,
  95. stream: bool = True,
  96. user: Optional[str] = None,
  97. ) -> None:
  98. """
  99. After invoke callback
  100. :param llm_instance: LLM instance
  101. :param result: result
  102. :param model: model name
  103. :param credentials: model credentials
  104. :param prompt_messages: prompt messages
  105. :param model_parameters: model parameters
  106. :param tools: tools for tool calling
  107. :param stop: stop words
  108. :param stream: is stream response
  109. :param user: unique user id
  110. """
  111. self.print_text("\n[on_llm_after_invoke]\n", color="yellow")
  112. self.print_text(f"Content: {result.message.content}\n", color="yellow")
  113. if result.message.tool_calls:
  114. self.print_text("Tool calls:\n", color="yellow")
  115. for tool_call in result.message.tool_calls:
  116. self.print_text(f"\t{tool_call.id}\n", color="yellow")
  117. self.print_text(f"\t{tool_call.function.name}\n", color="yellow")
  118. self.print_text(f"\t{json.dumps(tool_call.function.arguments)}\n", color="yellow")
  119. self.print_text(f"Model: {result.model}\n", color="yellow")
  120. self.print_text(f"Usage: {result.usage}\n", color="yellow")
  121. self.print_text(f"System Fingerprint: {result.system_fingerprint}\n", color="yellow")
  122. def on_invoke_error(
  123. self,
  124. llm_instance: AIModel,
  125. ex: Exception,
  126. model: str,
  127. credentials: dict,
  128. prompt_messages: list[PromptMessage],
  129. model_parameters: dict,
  130. tools: Optional[list[PromptMessageTool]] = None,
  131. stop: Optional[list[str]] = None,
  132. stream: bool = True,
  133. user: Optional[str] = None,
  134. ) -> None:
  135. """
  136. Invoke error callback
  137. :param llm_instance: LLM instance
  138. :param ex: exception
  139. :param model: model name
  140. :param credentials: model credentials
  141. :param prompt_messages: prompt messages
  142. :param model_parameters: model parameters
  143. :param tools: tools for tool calling
  144. :param stop: stop words
  145. :param stream: is stream response
  146. :param user: unique user id
  147. """
  148. self.print_text("\n[on_llm_invoke_error]\n", color="red")
  149. logger.exception(ex)