-LAN- 951308b5f3 refactor(service): handle unsupported DSL version with warning (#10151) 6 сар өмнө
..
.idea 7ae728a9a3 fix nltk averaged_perceptron_tagger download and fix score limit is none (#7582) 8 сар өмнө
.vscode e61752bd3a feat/enhance the multi-modal support (#8818) 6 сар өмнө
configs b61baa87ec fix: avoid unexpected error when create knowledge base with baidu vector database and wenxin embedding model (#10130) 6 сар өмнө
constants 3e9d271b52 nltk security issue and upgrade unstructured (#9558) 6 сар өмнө
contexts e61752bd3a feat/enhance the multi-modal support (#8818) 6 сар өмнө
controllers ce260f79d2 Feat/update knowledge api url (#10102) 6 сар өмнө
core 8d5456b6d0 Add VESSL AI OpenAI API-compatible model provider and LLM model (#9474) 6 сар өмнө
docker 8dfdb37de3 fix: use LOG_LEVEL for celery startup (#7628) 8 сар өмнө
events e61752bd3a feat/enhance the multi-modal support (#8818) 6 сар өмнө
extensions 0a3d51e9cf Revert "chore: improve validation and handler of logging timezone with TimezoneName" (#10077) 6 сар өмнө
factories 219f5d9845 Fixed the issue where recall the knowledge base in the iteration of the workflow and report errors when executing (#10060) 6 сар өмнө
fields 190b6a2aa6 feat: /conversations api response add 'update_at' field,and update api docs add sort_by parameter (#10043) 6 сар өмнө
libs 4d9160ca9f refactor: use dify_config to replace legacy usage of flask app's config (#9089) 6 сар өмнө
migrations 18106a4fc6 add tidb on qdrant type (#9831) 6 сар өмнө
models e5397c5ec2 feat(app_dsl_service): enhance error handling and DSL version management (#10108) 6 сар өмнө
schedule 18106a4fc6 add tidb on qdrant type (#9831) 6 сар өмнө
services 951308b5f3 refactor(service): handle unsupported DSL version with warning (#10151) 6 сар өмнө
tasks 4fd2743efa Feat/new login (#8120) 6 сар өмнө
templates 4fd2743efa Feat/new login (#8120) 6 сар өмнө
tests 951308b5f3 refactor(service): handle unsupported DSL version with warning (#10151) 6 сар өмнө
.dockerignore 27f0ae8416 build: support Poetry for depencencies tool in api's Dockerfile (#5105) 10 сар өмнө
.env.example c6e54c83c8 chore: add tidb-on-qdrant configuration in env and docker-compose file (#10015) 6 сар өмнө
Dockerfile 05d9adeb99 fix(Dockerfile): conditionally install zlib1g based on architecture (#10118) 6 сар өмнө
README.md a8134a49c4 fix: poetry installation in CI jobs (#9336) 7 сар өмнө
app.py 4d9160ca9f refactor: use dify_config to replace legacy usage of flask app's config (#9089) 6 сар өмнө
app_factory.py 4d9160ca9f refactor: use dify_config to replace legacy usage of flask app's config (#9089) 6 сар өмнө
commands.py 878d13ef42 Added OceanBase as an option for the vector store in Dify (#10010) 6 сар өмнө
poetry.lock b61baa87ec fix: avoid unexpected error when create knowledge base with baidu vector database and wenxin embedding model (#10130) 6 сар өмнө
poetry.toml f62f71a81a build: initial support for poetry build tool (#4513) 11 сар өмнө
pyproject.toml 878d13ef42 Added OceanBase as an option for the vector store in Dify (#10010) 6 сар өмнө
pytest.ini 0ebd985672 feat: add models for gitee.ai (#9490) 6 сар өмнө

README.md

Dify Backend API

Usage

[!IMPORTANT] In the v0.6.12 release, we deprecated pip as the package management tool for Dify API Backend service and replaced it with poetry.

  1. Start the docker-compose stack

The backend require some middleware, including PostgreSQL, Redis, and Weaviate, which can be started together using docker-compose.

   cd ../docker
   cp middleware.env.example middleware.env
   # change the profile to other vector database if you are not using weaviate
   docker compose -f docker-compose.middleware.yaml --profile weaviate -p dify up -d
   cd ../api
  1. Copy .env.example to .env
  2. Generate a SECRET_KEY in the .env file.

    sed -i "/^SECRET_KEY=/c\SECRET_KEY=$(openssl rand -base64 42)" .env
    
    secret_key=$(openssl rand -base64 42)
    sed -i '' "/^SECRET_KEY=/c\\
    SECRET_KEY=${secret_key}" .env
    
  3. Create environment.

Dify API service uses Poetry to manage dependencies. You can execute poetry shell to activate the environment.

  1. Install dependencies

    poetry env use 3.10
    poetry install
    

In case of contributors missing to update dependencies for pyproject.toml, you can perform the following shell instead.

   poetry shell                                               # activate current environment
   poetry add $(cat requirements.txt)           # install dependencies of production and update pyproject.toml
   poetry add $(cat requirements-dev.txt) --group dev    # install dependencies of development and update pyproject.toml
  1. Run migrate

Before the first launch, migrate the database to the latest version.

   poetry run python -m flask db upgrade
  1. Start backend

    poetry run python -m flask run --host 0.0.0.0 --port=5001 --debug
    
  2. Start Dify web service.

  3. Setup your application by visiting http://localhost:3000...

  4. If you need to handle and debug the async tasks (e.g. dataset importing and documents indexing), please start the worker service.

    poetry run python -m celery -A app.celery worker -P gevent -c 1 --loglevel INFO -Q dataset,generation,mail,ops_trace,app_deletion
    

Testing

  1. Install dependencies for both the backend and the test environment

    poetry install --with dev
    
  2. Run the tests locally with mocked system environment variables in tool.pytest_env section in pyproject.toml

    cd ../
    poetry run -C api bash dev/pytest/pytest_all_tests.sh