main_chain_builder.py 4.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110
  1. from typing import Optional, List, cast
  2. from langchain.chains import SequentialChain
  3. from langchain.chains.base import Chain
  4. from langchain.memory.chat_memory import BaseChatMemory
  5. from core.callback_handler.main_chain_gather_callback_handler import MainChainGatherCallbackHandler
  6. from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
  7. from core.chain.chain_builder import ChainBuilder
  8. from core.chain.multi_dataset_router_chain import MultiDatasetRouterChain
  9. from core.conversation_message_task import ConversationMessageTask
  10. from extensions.ext_database import db
  11. from models.dataset import Dataset
  12. class MainChainBuilder:
  13. @classmethod
  14. def to_langchain_components(cls, tenant_id: str, agent_mode: dict, memory: Optional[BaseChatMemory],
  15. rest_tokens: int,
  16. conversation_message_task: ConversationMessageTask):
  17. first_input_key = "input"
  18. final_output_key = "output"
  19. chains = []
  20. chain_callback_handler = MainChainGatherCallbackHandler(conversation_message_task)
  21. # agent mode
  22. tool_chains, chains_output_key = cls.get_agent_chains(
  23. tenant_id=tenant_id,
  24. agent_mode=agent_mode,
  25. rest_tokens=rest_tokens,
  26. memory=memory,
  27. conversation_message_task=conversation_message_task
  28. )
  29. chains += tool_chains
  30. if chains_output_key:
  31. final_output_key = chains_output_key
  32. if len(chains) == 0:
  33. return None
  34. for chain in chains:
  35. chain = cast(Chain, chain)
  36. chain.callbacks.append(chain_callback_handler)
  37. # build main chain
  38. overall_chain = SequentialChain(
  39. chains=chains,
  40. input_variables=[first_input_key],
  41. output_variables=[final_output_key],
  42. memory=memory, # only for use the memory prompt input key
  43. )
  44. return overall_chain
  45. @classmethod
  46. def get_agent_chains(cls, tenant_id: str, agent_mode: dict,
  47. rest_tokens: int,
  48. memory: Optional[BaseChatMemory],
  49. conversation_message_task: ConversationMessageTask):
  50. # agent mode
  51. chains = []
  52. if agent_mode and agent_mode.get('enabled'):
  53. tools = agent_mode.get('tools', [])
  54. pre_fixed_chains = []
  55. # agent_tools = []
  56. datasets = []
  57. for tool in tools:
  58. tool_type = list(tool.keys())[0]
  59. tool_config = list(tool.values())[0]
  60. if tool_type == 'sensitive-word-avoidance':
  61. chain = ChainBuilder.to_sensitive_word_avoidance_chain(tool_config)
  62. if chain:
  63. pre_fixed_chains.append(chain)
  64. elif tool_type == "dataset":
  65. # get dataset from dataset id
  66. dataset = db.session.query(Dataset).filter(
  67. Dataset.tenant_id == tenant_id,
  68. Dataset.id == tool_config.get("id")
  69. ).first()
  70. if dataset:
  71. datasets.append(dataset)
  72. # add pre-fixed chains
  73. chains += pre_fixed_chains
  74. if len(datasets) > 0:
  75. # tool to chain
  76. multi_dataset_router_chain = MultiDatasetRouterChain.from_datasets(
  77. tenant_id=tenant_id,
  78. datasets=datasets,
  79. conversation_message_task=conversation_message_task,
  80. rest_tokens=rest_tokens,
  81. callbacks=[DifyStdOutCallbackHandler()]
  82. )
  83. chains.append(multi_dataset_router_chain)
  84. final_output_key = cls.get_chains_output_key(chains)
  85. return chains, final_output_key
  86. @classmethod
  87. def get_chains_output_key(cls, chains: List[Chain]):
  88. if len(chains) > 0:
  89. return chains[-1].output_keys[0]
  90. return None