agent_executor.py 6.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139
  1. import enum
  2. import logging
  3. from typing import Union, Optional
  4. from langchain.agents import BaseSingleActionAgent, BaseMultiActionAgent
  5. from langchain.callbacks.manager import Callbacks
  6. from langchain.memory.chat_memory import BaseChatMemory
  7. from langchain.tools import BaseTool
  8. from pydantic import BaseModel, Extra
  9. from core.agent.agent.multi_dataset_router_agent import MultiDatasetRouterAgent
  10. from core.agent.agent.openai_function_call import AutoSummarizingOpenAIFunctionCallAgent
  11. from core.agent.agent.openai_multi_function_call import AutoSummarizingOpenMultiAIFunctionCallAgent
  12. from core.agent.agent.output_parser.structured_chat import StructuredChatOutputParser
  13. from core.agent.agent.structed_multi_dataset_router_agent import StructuredMultiDatasetRouterAgent
  14. from core.agent.agent.structured_chat import AutoSummarizingStructuredChatAgent
  15. from langchain.agents import AgentExecutor as LCAgentExecutor
  16. from core.model_providers.models.llm.base import BaseLLM
  17. from core.tool.dataset_retriever_tool import DatasetRetrieverTool
  18. class PlanningStrategy(str, enum.Enum):
  19. ROUTER = 'router'
  20. REACT_ROUTER = 'react_router'
  21. REACT = 'react'
  22. FUNCTION_CALL = 'function_call'
  23. MULTI_FUNCTION_CALL = 'multi_function_call'
  24. class AgentConfiguration(BaseModel):
  25. strategy: PlanningStrategy
  26. model_instance: BaseLLM
  27. tools: list[BaseTool]
  28. summary_model_instance: BaseLLM = None
  29. memory: Optional[BaseChatMemory] = None
  30. callbacks: Callbacks = None
  31. max_iterations: int = 6
  32. max_execution_time: Optional[float] = None
  33. early_stopping_method: str = "generate"
  34. # `generate` will continue to complete the last inference after reaching the iteration limit or request time limit
  35. class Config:
  36. """Configuration for this pydantic object."""
  37. extra = Extra.forbid
  38. arbitrary_types_allowed = True
  39. class AgentExecuteResult(BaseModel):
  40. strategy: PlanningStrategy
  41. output: Optional[str]
  42. configuration: AgentConfiguration
  43. class AgentExecutor:
  44. def __init__(self, configuration: AgentConfiguration):
  45. self.configuration = configuration
  46. self.agent = self._init_agent()
  47. def _init_agent(self) -> Union[BaseSingleActionAgent | BaseMultiActionAgent]:
  48. if self.configuration.strategy == PlanningStrategy.REACT:
  49. agent = AutoSummarizingStructuredChatAgent.from_llm_and_tools(
  50. model_instance=self.configuration.model_instance,
  51. llm=self.configuration.model_instance.client,
  52. tools=self.configuration.tools,
  53. output_parser=StructuredChatOutputParser(),
  54. summary_llm=self.configuration.summary_model_instance.client
  55. if self.configuration.summary_model_instance else None,
  56. verbose=True
  57. )
  58. elif self.configuration.strategy == PlanningStrategy.FUNCTION_CALL:
  59. agent = AutoSummarizingOpenAIFunctionCallAgent.from_llm_and_tools(
  60. model_instance=self.configuration.model_instance,
  61. llm=self.configuration.model_instance.client,
  62. tools=self.configuration.tools,
  63. extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
  64. summary_llm=self.configuration.summary_model_instance.client
  65. if self.configuration.summary_model_instance else None,
  66. verbose=True
  67. )
  68. elif self.configuration.strategy == PlanningStrategy.MULTI_FUNCTION_CALL:
  69. agent = AutoSummarizingOpenMultiAIFunctionCallAgent.from_llm_and_tools(
  70. model_instance=self.configuration.model_instance,
  71. llm=self.configuration.model_instance.client,
  72. tools=self.configuration.tools,
  73. extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None, # used for read chat histories memory
  74. summary_llm=self.configuration.summary_model_instance.client
  75. if self.configuration.summary_model_instance else None,
  76. verbose=True
  77. )
  78. elif self.configuration.strategy == PlanningStrategy.ROUTER:
  79. self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
  80. agent = MultiDatasetRouterAgent.from_llm_and_tools(
  81. model_instance=self.configuration.model_instance,
  82. llm=self.configuration.model_instance.client,
  83. tools=self.configuration.tools,
  84. extra_prompt_messages=self.configuration.memory.buffer if self.configuration.memory else None,
  85. verbose=True
  86. )
  87. elif self.configuration.strategy == PlanningStrategy.REACT_ROUTER:
  88. self.configuration.tools = [t for t in self.configuration.tools if isinstance(t, DatasetRetrieverTool)]
  89. agent = StructuredMultiDatasetRouterAgent.from_llm_and_tools(
  90. model_instance=self.configuration.model_instance,
  91. llm=self.configuration.model_instance.client,
  92. tools=self.configuration.tools,
  93. output_parser=StructuredChatOutputParser(),
  94. verbose=True
  95. )
  96. else:
  97. raise NotImplementedError(f"Unknown Agent Strategy: {self.configuration.strategy}")
  98. return agent
  99. def should_use_agent(self, query: str) -> bool:
  100. return self.agent.should_use_agent(query)
  101. def run(self, query: str) -> AgentExecuteResult:
  102. agent_executor = LCAgentExecutor.from_agent_and_tools(
  103. agent=self.agent,
  104. tools=self.configuration.tools,
  105. memory=self.configuration.memory,
  106. max_iterations=self.configuration.max_iterations,
  107. max_execution_time=self.configuration.max_execution_time,
  108. early_stopping_method=self.configuration.early_stopping_method,
  109. callbacks=self.configuration.callbacks
  110. )
  111. try:
  112. output = agent_executor.run(query)
  113. except Exception:
  114. logging.exception("agent_executor run failed")
  115. output = None
  116. return AgentExecuteResult(
  117. output=output,
  118. strategy=self.configuration.strategy,
  119. configuration=self.configuration
  120. )