| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071 | 
							- from typing import Optional
 
- from core.rag.datasource.keyword.keyword_factory import Keyword
 
- from core.rag.datasource.vdb.vector_factory import Vector
 
- from core.rag.models.document import Document
 
- from models.dataset import Dataset, DocumentSegment
 
- class VectorService:
 
-     @classmethod
 
-     def create_segments_vector(cls, keywords_list: Optional[list[list[str]]],
 
-                                segments: list[DocumentSegment], dataset: Dataset):
 
-         documents = []
 
-         for segment in segments:
 
-             document = Document(
 
-                 page_content=segment.content,
 
-                 metadata={
 
-                     "doc_id": segment.index_node_id,
 
-                     "doc_hash": segment.index_node_hash,
 
-                     "document_id": segment.document_id,
 
-                     "dataset_id": segment.dataset_id,
 
-                 }
 
-             )
 
-             documents.append(document)
 
-         if dataset.indexing_technique == 'high_quality':
 
-             # save vector index
 
-             vector = Vector(
 
-                 dataset=dataset
 
-             )
 
-             vector.add_texts(documents, duplicate_check=True)
 
-         # save keyword index
 
-         keyword = Keyword(dataset)
 
-         if keywords_list and len(keywords_list) > 0:
 
-             keyword.add_texts(documents, keywords_list=keywords_list)
 
-         else:
 
-             keyword.add_texts(documents)
 
-     @classmethod
 
-     def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
 
-         # update segment index task
 
-         # format new index
 
-         document = Document(
 
-             page_content=segment.content,
 
-             metadata={
 
-                 "doc_id": segment.index_node_id,
 
-                 "doc_hash": segment.index_node_hash,
 
-                 "document_id": segment.document_id,
 
-                 "dataset_id": segment.dataset_id,
 
-             }
 
-         )
 
-         if dataset.indexing_technique == 'high_quality':
 
-             # update vector index
 
-             vector = Vector(
 
-                 dataset=dataset
 
-             )
 
-             vector.delete_by_ids([segment.index_node_id])
 
-             vector.add_texts([document], duplicate_check=True)
 
-         # update keyword index
 
-         keyword = Keyword(dataset)
 
-         keyword.delete_by_ids([segment.index_node_id])
 
-         # save keyword index
 
-         if keywords and len(keywords) > 0:
 
-             keyword.add_texts([document], keywords_list=[keywords])
 
-         else:
 
-             keyword.add_texts([document])
 
 
  |