batch_create_segment_to_index_task.py 3.9 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697
  1. import datetime
  2. import logging
  3. import time
  4. import uuid
  5. from typing import Optional, List
  6. import click
  7. from celery import shared_task
  8. from sqlalchemy import func
  9. from werkzeug.exceptions import NotFound
  10. from core.index.index import IndexBuilder
  11. from core.indexing_runner import IndexingRunner
  12. from core.model_providers.model_factory import ModelFactory
  13. from extensions.ext_database import db
  14. from extensions.ext_redis import redis_client
  15. from libs import helper
  16. from models.dataset import DocumentSegment, Dataset, Document
  17. @shared_task(queue='dataset')
  18. def batch_create_segment_to_index_task(job_id: str, content: List, dataset_id: str, document_id: str,
  19. tenant_id: str, user_id: str):
  20. """
  21. Async batch create segment to index
  22. :param job_id:
  23. :param content:
  24. :param dataset_id:
  25. :param document_id:
  26. :param tenant_id:
  27. :param user_id:
  28. Usage: batch_create_segment_to_index_task.delay(segment_id)
  29. """
  30. logging.info(click.style('Start batch create segment jobId: {}'.format(job_id), fg='green'))
  31. start_at = time.perf_counter()
  32. indexing_cache_key = 'segment_batch_import_{}'.format(job_id)
  33. try:
  34. dataset = db.session.query(Dataset).filter(Dataset.id == dataset_id).first()
  35. if not dataset:
  36. raise ValueError('Dataset not exist.')
  37. dataset_document = db.session.query(Document).filter(Document.id == document_id).first()
  38. if not dataset_document:
  39. raise ValueError('Document not exist.')
  40. if not dataset_document.enabled or dataset_document.archived or dataset_document.indexing_status != 'completed':
  41. raise ValueError('Document is not available.')
  42. document_segments = []
  43. embedding_model = None
  44. if dataset.indexing_technique == 'high_quality':
  45. embedding_model = ModelFactory.get_embedding_model(
  46. tenant_id=dataset.tenant_id,
  47. model_provider_name=dataset.embedding_model_provider,
  48. model_name=dataset.embedding_model
  49. )
  50. for segment in content:
  51. content = segment['content']
  52. doc_id = str(uuid.uuid4())
  53. segment_hash = helper.generate_text_hash(content)
  54. # calc embedding use tokens
  55. tokens = embedding_model.get_num_tokens(content) if embedding_model else 0
  56. max_position = db.session.query(func.max(DocumentSegment.position)).filter(
  57. DocumentSegment.document_id == dataset_document.id
  58. ).scalar()
  59. segment_document = DocumentSegment(
  60. tenant_id=tenant_id,
  61. dataset_id=dataset_id,
  62. document_id=document_id,
  63. index_node_id=doc_id,
  64. index_node_hash=segment_hash,
  65. position=max_position + 1 if max_position else 1,
  66. content=content,
  67. word_count=len(content),
  68. tokens=tokens,
  69. created_by=user_id,
  70. indexing_at=datetime.datetime.utcnow(),
  71. status='completed',
  72. completed_at=datetime.datetime.utcnow()
  73. )
  74. if dataset_document.doc_form == 'qa_model':
  75. segment_document.answer = segment['answer']
  76. db.session.add(segment_document)
  77. document_segments.append(segment_document)
  78. # add index to db
  79. indexing_runner = IndexingRunner()
  80. indexing_runner.batch_add_segments(document_segments, dataset)
  81. db.session.commit()
  82. redis_client.setex(indexing_cache_key, 600, 'completed')
  83. end_at = time.perf_counter()
  84. logging.info(click.style('Segment batch created job: {} latency: {}'.format(job_id, end_at - start_at), fg='green'))
  85. except Exception as e:
  86. logging.exception("Segments batch created index failed:{}".format(str(e)))
  87. redis_client.setex(indexing_cache_key, 600, 'error')