123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233 |
- import json
- import threading
- from typing import Type, Optional, List
- from flask import current_app, Flask
- from langchain.tools import BaseTool
- from pydantic import Field, BaseModel
- from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
- from core.conversation_message_task import ConversationMessageTask
- from core.embedding.cached_embedding import CacheEmbedding
- from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
- from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
- from core.model_providers.model_factory import ModelFactory
- from extensions.ext_database import db
- from models.dataset import Dataset, DocumentSegment, Document
- from services.retrieval_service import RetrievalService
- default_retrieval_model = {
- 'search_method': 'semantic_search',
- 'reranking_enable': False,
- 'reranking_model': {
- 'reranking_provider_name': '',
- 'reranking_model_name': ''
- },
- 'top_k': 2,
- 'score_threshold_enabled': False
- }
- class DatasetMultiRetrieverToolInput(BaseModel):
- query: str = Field(..., description="dataset multi retriever and rerank")
- class DatasetMultiRetrieverTool(BaseTool):
- """Tool for querying multi dataset."""
- name: str = "dataset-"
- args_schema: Type[BaseModel] = DatasetMultiRetrieverToolInput
- description: str = "dataset multi retriever and rerank. "
- tenant_id: str
- dataset_ids: List[str]
- top_k: int = 2
- score_threshold: Optional[float] = None
- reranking_provider_name: str
- reranking_model_name: str
- conversation_message_task: ConversationMessageTask
- return_resource: bool
- retriever_from: str
- @classmethod
- def from_dataset(cls, dataset_ids: List[str], tenant_id: str, **kwargs):
- return cls(
- name=f'dataset-{tenant_id}',
- tenant_id=tenant_id,
- dataset_ids=dataset_ids,
- **kwargs
- )
- def _run(self, query: str) -> str:
- threads = []
- all_documents = []
- for dataset_id in self.dataset_ids:
- retrieval_thread = threading.Thread(target=self._retriever, kwargs={
- 'flask_app': current_app._get_current_object(),
- 'dataset_id': dataset_id,
- 'query': query,
- 'all_documents': all_documents
- })
- threads.append(retrieval_thread)
- retrieval_thread.start()
- for thread in threads:
- thread.join()
- # do rerank for searched documents
- rerank = ModelFactory.get_reranking_model(
- tenant_id=self.tenant_id,
- model_provider_name=self.reranking_provider_name,
- model_name=self.reranking_model_name
- )
- all_documents = rerank.rerank(query, all_documents, self.score_threshold, self.top_k)
- hit_callback = DatasetIndexToolCallbackHandler(self.conversation_message_task)
- hit_callback.on_tool_end(all_documents)
- document_score_list = {}
- for item in all_documents:
- if 'score' in item.metadata and item.metadata['score']:
- document_score_list[item.metadata['doc_id']] = item.metadata['score']
- document_context_list = []
- index_node_ids = [document.metadata['doc_id'] for document in all_documents]
- segments = DocumentSegment.query.filter(
- DocumentSegment.completed_at.isnot(None),
- DocumentSegment.status == 'completed',
- DocumentSegment.enabled == True,
- DocumentSegment.index_node_id.in_(index_node_ids)
- ).all()
- if segments:
- index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
- sorted_segments = sorted(segments,
- key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
- float('inf')))
- for segment in sorted_segments:
- if segment.answer:
- document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
- else:
- document_context_list.append(segment.content)
- if self.return_resource:
- context_list = []
- resource_number = 1
- for segment in sorted_segments:
- dataset = Dataset.query.filter_by(
- id=segment.dataset_id
- ).first()
- document = Document.query.filter(Document.id == segment.document_id,
- Document.enabled == True,
- Document.archived == False,
- ).first()
- if dataset and document:
- source = {
- 'position': resource_number,
- 'dataset_id': dataset.id,
- 'dataset_name': dataset.name,
- 'document_id': document.id,
- 'document_name': document.name,
- 'data_source_type': document.data_source_type,
- 'segment_id': segment.id,
- 'retriever_from': self.retriever_from,
- 'score': document_score_list.get(segment.index_node_id, None)
- }
- if self.retriever_from == 'dev':
- source['hit_count'] = segment.hit_count
- source['word_count'] = segment.word_count
- source['segment_position'] = segment.position
- source['index_node_hash'] = segment.index_node_hash
- if segment.answer:
- source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
- else:
- source['content'] = segment.content
- context_list.append(source)
- resource_number += 1
- hit_callback.return_retriever_resource_info(context_list)
- return str("\n".join(document_context_list))
- async def _arun(self, tool_input: str) -> str:
- raise NotImplementedError()
- def _retriever(self, flask_app: Flask, dataset_id: str, query: str, all_documents: List):
- with flask_app.app_context():
- dataset = db.session.query(Dataset).filter(
- Dataset.tenant_id == self.tenant_id,
- Dataset.id == dataset_id
- ).first()
- if not dataset:
- return []
- # get retrieval model , if the model is not setting , using default
- retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
- if dataset.indexing_technique == "economy":
- # use keyword table query
- kw_table_index = KeywordTableIndex(
- dataset=dataset,
- config=KeywordTableConfig(
- max_keywords_per_chunk=5
- )
- )
- documents = kw_table_index.search(query, search_kwargs={'k': self.top_k})
- if documents:
- all_documents.extend(documents)
- else:
- try:
- embedding_model = ModelFactory.get_embedding_model(
- tenant_id=dataset.tenant_id,
- model_provider_name=dataset.embedding_model_provider,
- model_name=dataset.embedding_model
- )
- except LLMBadRequestError:
- return []
- except ProviderTokenNotInitError:
- return []
- embeddings = CacheEmbedding(embedding_model)
- documents = []
- threads = []
- if self.top_k > 0:
- # retrieval_model source with semantic
- if retrieval_model['search_method'] == 'semantic_search' or retrieval_model[
- 'search_method'] == 'hybrid_search':
- embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
- 'flask_app': current_app._get_current_object(),
- 'dataset_id': str(dataset.id),
- 'query': query,
- 'top_k': self.top_k,
- 'score_threshold': self.score_threshold,
- 'reranking_model': None,
- 'all_documents': documents,
- 'search_method': 'hybrid_search',
- 'embeddings': embeddings
- })
- threads.append(embedding_thread)
- embedding_thread.start()
- # retrieval_model source with full text
- if retrieval_model['search_method'] == 'full_text_search' or retrieval_model[
- 'search_method'] == 'hybrid_search':
- full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search,
- kwargs={
- 'flask_app': current_app._get_current_object(),
- 'dataset_id': str(dataset.id),
- 'query': query,
- 'search_method': 'hybrid_search',
- 'embeddings': embeddings,
- 'score_threshold': retrieval_model[
- 'score_threshold'] if retrieval_model[
- 'score_threshold_enabled'] else None,
- 'top_k': self.top_k,
- 'reranking_model': retrieval_model[
- 'reranking_model'] if retrieval_model[
- 'reranking_enable'] else None,
- 'all_documents': documents
- })
- threads.append(full_text_index_thread)
- full_text_index_thread.start()
- for thread in threads:
- thread.join()
- all_documents.extend(documents)
|