dataset_multi_retriever_tool.py 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. import json
  2. import threading
  3. from typing import Type, Optional, List
  4. from flask import current_app, Flask
  5. from langchain.tools import BaseTool
  6. from pydantic import Field, BaseModel
  7. from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
  8. from core.conversation_message_task import ConversationMessageTask
  9. from core.embedding.cached_embedding import CacheEmbedding
  10. from core.index.keyword_table_index.keyword_table_index import KeywordTableIndex, KeywordTableConfig
  11. from core.model_providers.error import LLMBadRequestError, ProviderTokenNotInitError
  12. from core.model_providers.model_factory import ModelFactory
  13. from extensions.ext_database import db
  14. from models.dataset import Dataset, DocumentSegment, Document
  15. from services.retrieval_service import RetrievalService
  16. default_retrieval_model = {
  17. 'search_method': 'semantic_search',
  18. 'reranking_enable': False,
  19. 'reranking_model': {
  20. 'reranking_provider_name': '',
  21. 'reranking_model_name': ''
  22. },
  23. 'top_k': 2,
  24. 'score_threshold_enabled': False
  25. }
  26. class DatasetMultiRetrieverToolInput(BaseModel):
  27. query: str = Field(..., description="dataset multi retriever and rerank")
  28. class DatasetMultiRetrieverTool(BaseTool):
  29. """Tool for querying multi dataset."""
  30. name: str = "dataset-"
  31. args_schema: Type[BaseModel] = DatasetMultiRetrieverToolInput
  32. description: str = "dataset multi retriever and rerank. "
  33. tenant_id: str
  34. dataset_ids: List[str]
  35. top_k: int = 2
  36. score_threshold: Optional[float] = None
  37. reranking_provider_name: str
  38. reranking_model_name: str
  39. conversation_message_task: ConversationMessageTask
  40. return_resource: bool
  41. retriever_from: str
  42. @classmethod
  43. def from_dataset(cls, dataset_ids: List[str], tenant_id: str, **kwargs):
  44. return cls(
  45. name=f'dataset-{tenant_id}',
  46. tenant_id=tenant_id,
  47. dataset_ids=dataset_ids,
  48. **kwargs
  49. )
  50. def _run(self, query: str) -> str:
  51. threads = []
  52. all_documents = []
  53. for dataset_id in self.dataset_ids:
  54. retrieval_thread = threading.Thread(target=self._retriever, kwargs={
  55. 'flask_app': current_app._get_current_object(),
  56. 'dataset_id': dataset_id,
  57. 'query': query,
  58. 'all_documents': all_documents
  59. })
  60. threads.append(retrieval_thread)
  61. retrieval_thread.start()
  62. for thread in threads:
  63. thread.join()
  64. # do rerank for searched documents
  65. rerank = ModelFactory.get_reranking_model(
  66. tenant_id=self.tenant_id,
  67. model_provider_name=self.reranking_provider_name,
  68. model_name=self.reranking_model_name
  69. )
  70. all_documents = rerank.rerank(query, all_documents, self.score_threshold, self.top_k)
  71. hit_callback = DatasetIndexToolCallbackHandler(self.conversation_message_task)
  72. hit_callback.on_tool_end(all_documents)
  73. document_score_list = {}
  74. for item in all_documents:
  75. if 'score' in item.metadata and item.metadata['score']:
  76. document_score_list[item.metadata['doc_id']] = item.metadata['score']
  77. document_context_list = []
  78. index_node_ids = [document.metadata['doc_id'] for document in all_documents]
  79. segments = DocumentSegment.query.filter(
  80. DocumentSegment.completed_at.isnot(None),
  81. DocumentSegment.status == 'completed',
  82. DocumentSegment.enabled == True,
  83. DocumentSegment.index_node_id.in_(index_node_ids)
  84. ).all()
  85. if segments:
  86. index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
  87. sorted_segments = sorted(segments,
  88. key=lambda segment: index_node_id_to_position.get(segment.index_node_id,
  89. float('inf')))
  90. for segment in sorted_segments:
  91. if segment.answer:
  92. document_context_list.append(f'question:{segment.content} answer:{segment.answer}')
  93. else:
  94. document_context_list.append(segment.content)
  95. if self.return_resource:
  96. context_list = []
  97. resource_number = 1
  98. for segment in sorted_segments:
  99. dataset = Dataset.query.filter_by(
  100. id=segment.dataset_id
  101. ).first()
  102. document = Document.query.filter(Document.id == segment.document_id,
  103. Document.enabled == True,
  104. Document.archived == False,
  105. ).first()
  106. if dataset and document:
  107. source = {
  108. 'position': resource_number,
  109. 'dataset_id': dataset.id,
  110. 'dataset_name': dataset.name,
  111. 'document_id': document.id,
  112. 'document_name': document.name,
  113. 'data_source_type': document.data_source_type,
  114. 'segment_id': segment.id,
  115. 'retriever_from': self.retriever_from,
  116. 'score': document_score_list.get(segment.index_node_id, None)
  117. }
  118. if self.retriever_from == 'dev':
  119. source['hit_count'] = segment.hit_count
  120. source['word_count'] = segment.word_count
  121. source['segment_position'] = segment.position
  122. source['index_node_hash'] = segment.index_node_hash
  123. if segment.answer:
  124. source['content'] = f'question:{segment.content} \nanswer:{segment.answer}'
  125. else:
  126. source['content'] = segment.content
  127. context_list.append(source)
  128. resource_number += 1
  129. hit_callback.return_retriever_resource_info(context_list)
  130. return str("\n".join(document_context_list))
  131. async def _arun(self, tool_input: str) -> str:
  132. raise NotImplementedError()
  133. def _retriever(self, flask_app: Flask, dataset_id: str, query: str, all_documents: List):
  134. with flask_app.app_context():
  135. dataset = db.session.query(Dataset).filter(
  136. Dataset.tenant_id == self.tenant_id,
  137. Dataset.id == dataset_id
  138. ).first()
  139. if not dataset:
  140. return []
  141. # get retrieval model , if the model is not setting , using default
  142. retrieval_model = dataset.retrieval_model if dataset.retrieval_model else default_retrieval_model
  143. if dataset.indexing_technique == "economy":
  144. # use keyword table query
  145. kw_table_index = KeywordTableIndex(
  146. dataset=dataset,
  147. config=KeywordTableConfig(
  148. max_keywords_per_chunk=5
  149. )
  150. )
  151. documents = kw_table_index.search(query, search_kwargs={'k': self.top_k})
  152. if documents:
  153. all_documents.extend(documents)
  154. else:
  155. try:
  156. embedding_model = ModelFactory.get_embedding_model(
  157. tenant_id=dataset.tenant_id,
  158. model_provider_name=dataset.embedding_model_provider,
  159. model_name=dataset.embedding_model
  160. )
  161. except LLMBadRequestError:
  162. return []
  163. except ProviderTokenNotInitError:
  164. return []
  165. embeddings = CacheEmbedding(embedding_model)
  166. documents = []
  167. threads = []
  168. if self.top_k > 0:
  169. # retrieval_model source with semantic
  170. if retrieval_model['search_method'] == 'semantic_search' or retrieval_model[
  171. 'search_method'] == 'hybrid_search':
  172. embedding_thread = threading.Thread(target=RetrievalService.embedding_search, kwargs={
  173. 'flask_app': current_app._get_current_object(),
  174. 'dataset_id': str(dataset.id),
  175. 'query': query,
  176. 'top_k': self.top_k,
  177. 'score_threshold': self.score_threshold,
  178. 'reranking_model': None,
  179. 'all_documents': documents,
  180. 'search_method': 'hybrid_search',
  181. 'embeddings': embeddings
  182. })
  183. threads.append(embedding_thread)
  184. embedding_thread.start()
  185. # retrieval_model source with full text
  186. if retrieval_model['search_method'] == 'full_text_search' or retrieval_model[
  187. 'search_method'] == 'hybrid_search':
  188. full_text_index_thread = threading.Thread(target=RetrievalService.full_text_index_search,
  189. kwargs={
  190. 'flask_app': current_app._get_current_object(),
  191. 'dataset_id': str(dataset.id),
  192. 'query': query,
  193. 'search_method': 'hybrid_search',
  194. 'embeddings': embeddings,
  195. 'score_threshold': retrieval_model[
  196. 'score_threshold'] if retrieval_model[
  197. 'score_threshold_enabled'] else None,
  198. 'top_k': self.top_k,
  199. 'reranking_model': retrieval_model[
  200. 'reranking_model'] if retrieval_model[
  201. 'reranking_enable'] else None,
  202. 'all_documents': documents
  203. })
  204. threads.append(full_text_index_thread)
  205. full_text_index_thread.start()
  206. for thread in threads:
  207. thread.join()
  208. all_documents.extend(documents)