| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 | import osfrom typing import Generatorimport pytestfrom core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDeltafrom core.model_runtime.entities.message_entities import AssistantPromptMessage, SystemPromptMessage, UserPromptMessagefrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.bedrock.llm.llm import BedrockLargeLanguageModeldef test_validate_credentials():    model = BedrockLargeLanguageModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(            model='meta.llama2-13b-chat-v1',            credentials={                'anthropic_api_key': 'invalid_key'            }        )    model.validate_credentials(        model='meta.llama2-13b-chat-v1',        credentials={            "aws_region": os.getenv("AWS_REGION"),            "aws_access_key": os.getenv("AWS_ACCESS_KEY"),            "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")        }    )def test_invoke_model():    model = BedrockLargeLanguageModel()    response = model.invoke(        model='meta.llama2-13b-chat-v1',        credentials={            "aws_region": os.getenv("AWS_REGION"),            "aws_access_key": os.getenv("AWS_ACCESS_KEY"),            "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ],        model_parameters={            'temperature': 0.0,            'top_p': 1.0,            'max_tokens_to_sample': 10        },        stop=['How'],        stream=False,        user="abc-123"    )    assert isinstance(response, LLMResult)    assert len(response.message.content) > 0def test_invoke_stream_model():    model = BedrockLargeLanguageModel()    response = model.invoke(        model='meta.llama2-13b-chat-v1',        credentials={            "aws_region": os.getenv("AWS_REGION"),            "aws_access_key": os.getenv("AWS_ACCESS_KEY"),            "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")        },        prompt_messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ],        model_parameters={            'temperature': 0.0,            'max_tokens_to_sample': 100        },        stream=True,        user="abc-123"    )    assert isinstance(response, Generator)    for chunk in response:        print(chunk)        assert isinstance(chunk, LLMResultChunk)        assert isinstance(chunk.delta, LLMResultChunkDelta)        assert isinstance(chunk.delta.message, AssistantPromptMessage)        assert len(chunk.delta.message.content) > 0 if chunk.delta.finish_reason is None else Truedef test_get_num_tokens():    model = BedrockLargeLanguageModel()    num_tokens = model.get_num_tokens(        model='meta.llama2-13b-chat-v1',        credentials = {            "aws_region": os.getenv("AWS_REGION"),            "aws_access_key": os.getenv("AWS_ACCESS_KEY"),            "aws_secret_access_key": os.getenv("AWS_SECRET_ACCESS_KEY")        },        messages=[            SystemPromptMessage(                content='You are a helpful AI assistant.',            ),            UserPromptMessage(                content='Hello World!'            )        ]    )    assert num_tokens == 18
 |