dataset.py 3.4 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091
  1. from flask import request
  2. from flask_restful import marshal, reqparse
  3. import services.dataset_service
  4. from controllers.service_api import api
  5. from controllers.service_api.dataset.error import DatasetNameDuplicateError
  6. from controllers.service_api.wraps import DatasetApiResource
  7. from core.model_runtime.entities.model_entities import ModelType
  8. from core.provider_manager import ProviderManager
  9. from fields.dataset_fields import dataset_detail_fields
  10. from libs.login import current_user
  11. from models.dataset import Dataset
  12. from services.dataset_service import DatasetService
  13. def _validate_name(name):
  14. if not name or len(name) < 1 or len(name) > 40:
  15. raise ValueError('Name must be between 1 to 40 characters.')
  16. return name
  17. class DatasetApi(DatasetApiResource):
  18. """Resource for get datasets."""
  19. def get(self, tenant_id):
  20. page = request.args.get('page', default=1, type=int)
  21. limit = request.args.get('limit', default=20, type=int)
  22. provider = request.args.get('provider', default="vendor")
  23. datasets, total = DatasetService.get_datasets(page, limit, provider,
  24. tenant_id, current_user)
  25. # check embedding setting
  26. provider_manager = ProviderManager()
  27. configurations = provider_manager.get_configurations(
  28. tenant_id=current_user.current_tenant_id
  29. )
  30. embedding_models = configurations.get_models(
  31. model_type=ModelType.TEXT_EMBEDDING,
  32. only_active=True
  33. )
  34. model_names = []
  35. for embedding_model in embedding_models:
  36. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  37. data = marshal(datasets, dataset_detail_fields)
  38. for item in data:
  39. if item['indexing_technique'] == 'high_quality':
  40. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  41. if item_model in model_names:
  42. item['embedding_available'] = True
  43. else:
  44. item['embedding_available'] = False
  45. else:
  46. item['embedding_available'] = True
  47. response = {
  48. 'data': data,
  49. 'has_more': len(datasets) == limit,
  50. 'limit': limit,
  51. 'total': total,
  52. 'page': page
  53. }
  54. return response, 200
  55. """Resource for datasets."""
  56. def post(self, tenant_id):
  57. parser = reqparse.RequestParser()
  58. parser.add_argument('name', nullable=False, required=True,
  59. help='type is required. Name must be between 1 to 40 characters.',
  60. type=_validate_name)
  61. parser.add_argument('indexing_technique', type=str, location='json',
  62. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  63. help='Invalid indexing technique.')
  64. args = parser.parse_args()
  65. try:
  66. dataset = DatasetService.create_empty_dataset(
  67. tenant_id=tenant_id,
  68. name=args['name'],
  69. indexing_technique=args['indexing_technique'],
  70. account=current_user
  71. )
  72. except services.errors.dataset.DatasetNameDuplicateError:
  73. raise DatasetNameDuplicateError()
  74. return marshal(dataset, dataset_detail_fields), 200
  75. api.add_resource(DatasetApi, '/datasets')