datasets.py 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. # -*- coding:utf-8 -*-
  2. import flask_restful
  3. from flask import current_app, request
  4. from flask_login import current_user
  5. from flask_restful import Resource, marshal, marshal_with, reqparse
  6. from werkzeug.exceptions import Forbidden, NotFound
  7. import services
  8. from controllers.console import api
  9. from controllers.console.apikey import api_key_fields, api_key_list
  10. from controllers.console.app.error import ProviderNotInitializeError
  11. from controllers.console.datasets.error import DatasetNameDuplicateError
  12. from controllers.console.setup import setup_required
  13. from controllers.console.wraps import account_initialization_required
  14. from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
  15. from core.indexing_runner import IndexingRunner
  16. from core.model_runtime.entities.model_entities import ModelType
  17. from core.provider_manager import ProviderManager
  18. from extensions.ext_database import db
  19. from fields.app_fields import related_app_list
  20. from fields.dataset_fields import dataset_detail_fields, dataset_query_detail_fields
  21. from fields.document_fields import document_status_fields
  22. from libs.login import login_required
  23. from models.dataset import Dataset, Document, DocumentSegment
  24. from models.model import ApiToken, UploadFile
  25. from services.dataset_service import DatasetService, DocumentService
  26. def _validate_name(name):
  27. if not name or len(name) < 1 or len(name) > 40:
  28. raise ValueError('Name must be between 1 to 40 characters.')
  29. return name
  30. def _validate_description_length(description):
  31. if len(description) > 400:
  32. raise ValueError('Description cannot exceed 400 characters.')
  33. return description
  34. class DatasetListApi(Resource):
  35. @setup_required
  36. @login_required
  37. @account_initialization_required
  38. def get(self):
  39. page = request.args.get('page', default=1, type=int)
  40. limit = request.args.get('limit', default=20, type=int)
  41. ids = request.args.getlist('ids')
  42. provider = request.args.get('provider', default="vendor")
  43. if ids:
  44. datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
  45. else:
  46. datasets, total = DatasetService.get_datasets(page, limit, provider,
  47. current_user.current_tenant_id, current_user)
  48. # check embedding setting
  49. provider_manager = ProviderManager()
  50. configurations = provider_manager.get_configurations(
  51. tenant_id=current_user.current_tenant_id
  52. )
  53. embedding_models = configurations.get_models(
  54. model_type=ModelType.TEXT_EMBEDDING,
  55. only_active=True
  56. )
  57. model_names = []
  58. for embedding_model in embedding_models:
  59. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  60. data = marshal(datasets, dataset_detail_fields)
  61. for item in data:
  62. if item['indexing_technique'] == 'high_quality':
  63. item_model = f"{item['embedding_model']}:{item['embedding_model_provider']}"
  64. if item_model in model_names:
  65. item['embedding_available'] = True
  66. else:
  67. item['embedding_available'] = False
  68. else:
  69. item['embedding_available'] = True
  70. response = {
  71. 'data': data,
  72. 'has_more': len(datasets) == limit,
  73. 'limit': limit,
  74. 'total': total,
  75. 'page': page
  76. }
  77. return response, 200
  78. @setup_required
  79. @login_required
  80. @account_initialization_required
  81. def post(self):
  82. parser = reqparse.RequestParser()
  83. parser.add_argument('name', nullable=False, required=True,
  84. help='type is required. Name must be between 1 to 40 characters.',
  85. type=_validate_name)
  86. parser.add_argument('indexing_technique', type=str, location='json',
  87. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  88. nullable=True,
  89. help='Invalid indexing technique.')
  90. args = parser.parse_args()
  91. # The role of the current user in the ta table must be admin or owner
  92. if not current_user.is_admin_or_owner:
  93. raise Forbidden()
  94. try:
  95. dataset = DatasetService.create_empty_dataset(
  96. tenant_id=current_user.current_tenant_id,
  97. name=args['name'],
  98. indexing_technique=args['indexing_technique'],
  99. account=current_user
  100. )
  101. except services.errors.dataset.DatasetNameDuplicateError:
  102. raise DatasetNameDuplicateError()
  103. return marshal(dataset, dataset_detail_fields), 201
  104. class DatasetApi(Resource):
  105. @setup_required
  106. @login_required
  107. @account_initialization_required
  108. def get(self, dataset_id):
  109. dataset_id_str = str(dataset_id)
  110. dataset = DatasetService.get_dataset(dataset_id_str)
  111. if dataset is None:
  112. raise NotFound("Dataset not found.")
  113. try:
  114. DatasetService.check_dataset_permission(
  115. dataset, current_user)
  116. except services.errors.account.NoPermissionError as e:
  117. raise Forbidden(str(e))
  118. data = marshal(dataset, dataset_detail_fields)
  119. # check embedding setting
  120. provider_manager = ProviderManager()
  121. configurations = provider_manager.get_configurations(
  122. tenant_id=current_user.current_tenant_id
  123. )
  124. embedding_models = configurations.get_models(
  125. model_type=ModelType.TEXT_EMBEDDING,
  126. only_active=True
  127. )
  128. model_names = []
  129. for embedding_model in embedding_models:
  130. model_names.append(f"{embedding_model.model}:{embedding_model.provider.provider}")
  131. if data['indexing_technique'] == 'high_quality':
  132. item_model = f"{data['embedding_model']}:{data['embedding_model_provider']}"
  133. if item_model in model_names:
  134. data['embedding_available'] = True
  135. else:
  136. data['embedding_available'] = False
  137. else:
  138. data['embedding_available'] = True
  139. return data, 200
  140. @setup_required
  141. @login_required
  142. @account_initialization_required
  143. def patch(self, dataset_id):
  144. dataset_id_str = str(dataset_id)
  145. dataset = DatasetService.get_dataset(dataset_id_str)
  146. if dataset is None:
  147. raise NotFound("Dataset not found.")
  148. # check user's model setting
  149. DatasetService.check_dataset_model_setting(dataset)
  150. parser = reqparse.RequestParser()
  151. parser.add_argument('name', nullable=False,
  152. help='type is required. Name must be between 1 to 40 characters.',
  153. type=_validate_name)
  154. parser.add_argument('description',
  155. location='json', store_missing=False,
  156. type=_validate_description_length)
  157. parser.add_argument('indexing_technique', type=str, location='json',
  158. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  159. nullable=True,
  160. help='Invalid indexing technique.')
  161. parser.add_argument('permission', type=str, location='json', choices=(
  162. 'only_me', 'all_team_members'), help='Invalid permission.')
  163. parser.add_argument('retrieval_model', type=dict, location='json', help='Invalid retrieval model.')
  164. args = parser.parse_args()
  165. # The role of the current user in the ta table must be admin or owner
  166. if not current_user.is_admin_or_owner:
  167. raise Forbidden()
  168. dataset = DatasetService.update_dataset(
  169. dataset_id_str, args, current_user)
  170. if dataset is None:
  171. raise NotFound("Dataset not found.")
  172. return marshal(dataset, dataset_detail_fields), 200
  173. @setup_required
  174. @login_required
  175. @account_initialization_required
  176. def delete(self, dataset_id):
  177. dataset_id_str = str(dataset_id)
  178. # The role of the current user in the ta table must be admin or owner
  179. if not current_user.is_admin_or_owner:
  180. raise Forbidden()
  181. if DatasetService.delete_dataset(dataset_id_str, current_user):
  182. return {'result': 'success'}, 204
  183. else:
  184. raise NotFound("Dataset not found.")
  185. class DatasetQueryApi(Resource):
  186. @setup_required
  187. @login_required
  188. @account_initialization_required
  189. def get(self, dataset_id):
  190. dataset_id_str = str(dataset_id)
  191. dataset = DatasetService.get_dataset(dataset_id_str)
  192. if dataset is None:
  193. raise NotFound("Dataset not found.")
  194. try:
  195. DatasetService.check_dataset_permission(dataset, current_user)
  196. except services.errors.account.NoPermissionError as e:
  197. raise Forbidden(str(e))
  198. page = request.args.get('page', default=1, type=int)
  199. limit = request.args.get('limit', default=20, type=int)
  200. dataset_queries, total = DatasetService.get_dataset_queries(
  201. dataset_id=dataset.id,
  202. page=page,
  203. per_page=limit
  204. )
  205. response = {
  206. 'data': marshal(dataset_queries, dataset_query_detail_fields),
  207. 'has_more': len(dataset_queries) == limit,
  208. 'limit': limit,
  209. 'total': total,
  210. 'page': page
  211. }
  212. return response, 200
  213. class DatasetIndexingEstimateApi(Resource):
  214. @setup_required
  215. @login_required
  216. @account_initialization_required
  217. def post(self):
  218. parser = reqparse.RequestParser()
  219. parser.add_argument('info_list', type=dict, required=True, nullable=True, location='json')
  220. parser.add_argument('process_rule', type=dict, required=True, nullable=True, location='json')
  221. parser.add_argument('indexing_technique', type=str, required=True,
  222. choices=Dataset.INDEXING_TECHNIQUE_LIST,
  223. nullable=True, location='json')
  224. parser.add_argument('doc_form', type=str, default='text_model', required=False, nullable=False, location='json')
  225. parser.add_argument('dataset_id', type=str, required=False, nullable=False, location='json')
  226. parser.add_argument('doc_language', type=str, default='English', required=False, nullable=False,
  227. location='json')
  228. args = parser.parse_args()
  229. # validate args
  230. DocumentService.estimate_args_validate(args)
  231. if args['info_list']['data_source_type'] == 'upload_file':
  232. file_ids = args['info_list']['file_info_list']['file_ids']
  233. file_details = db.session.query(UploadFile).filter(
  234. UploadFile.tenant_id == current_user.current_tenant_id,
  235. UploadFile.id.in_(file_ids)
  236. ).all()
  237. if file_details is None:
  238. raise NotFound("File not found.")
  239. indexing_runner = IndexingRunner()
  240. try:
  241. response = indexing_runner.file_indexing_estimate(current_user.current_tenant_id, file_details,
  242. args['process_rule'], args['doc_form'],
  243. args['doc_language'], args['dataset_id'],
  244. args['indexing_technique'])
  245. except LLMBadRequestError:
  246. raise ProviderNotInitializeError(
  247. f"No Embedding Model available. Please configure a valid provider "
  248. f"in the Settings -> Model Provider.")
  249. except ProviderTokenNotInitError as ex:
  250. raise ProviderNotInitializeError(ex.description)
  251. elif args['info_list']['data_source_type'] == 'notion_import':
  252. indexing_runner = IndexingRunner()
  253. try:
  254. response = indexing_runner.notion_indexing_estimate(current_user.current_tenant_id,
  255. args['info_list']['notion_info_list'],
  256. args['process_rule'], args['doc_form'],
  257. args['doc_language'], args['dataset_id'],
  258. args['indexing_technique'])
  259. except LLMBadRequestError:
  260. raise ProviderNotInitializeError(
  261. f"No Embedding Model available. Please configure a valid provider "
  262. f"in the Settings -> Model Provider.")
  263. except ProviderTokenNotInitError as ex:
  264. raise ProviderNotInitializeError(ex.description)
  265. else:
  266. raise ValueError('Data source type not support')
  267. return response, 200
  268. class DatasetRelatedAppListApi(Resource):
  269. @setup_required
  270. @login_required
  271. @account_initialization_required
  272. @marshal_with(related_app_list)
  273. def get(self, dataset_id):
  274. dataset_id_str = str(dataset_id)
  275. dataset = DatasetService.get_dataset(dataset_id_str)
  276. if dataset is None:
  277. raise NotFound("Dataset not found.")
  278. try:
  279. DatasetService.check_dataset_permission(dataset, current_user)
  280. except services.errors.account.NoPermissionError as e:
  281. raise Forbidden(str(e))
  282. app_dataset_joins = DatasetService.get_related_apps(dataset.id)
  283. related_apps = []
  284. for app_dataset_join in app_dataset_joins:
  285. app_model = app_dataset_join.app
  286. if app_model:
  287. related_apps.append(app_model)
  288. return {
  289. 'data': related_apps,
  290. 'total': len(related_apps)
  291. }, 200
  292. class DatasetIndexingStatusApi(Resource):
  293. @setup_required
  294. @login_required
  295. @account_initialization_required
  296. def get(self, dataset_id):
  297. dataset_id = str(dataset_id)
  298. documents = db.session.query(Document).filter(
  299. Document.dataset_id == dataset_id,
  300. Document.tenant_id == current_user.current_tenant_id
  301. ).all()
  302. documents_status = []
  303. for document in documents:
  304. completed_segments = DocumentSegment.query.filter(DocumentSegment.completed_at.isnot(None),
  305. DocumentSegment.document_id == str(document.id),
  306. DocumentSegment.status != 're_segment').count()
  307. total_segments = DocumentSegment.query.filter(DocumentSegment.document_id == str(document.id),
  308. DocumentSegment.status != 're_segment').count()
  309. document.completed_segments = completed_segments
  310. document.total_segments = total_segments
  311. documents_status.append(marshal(document, document_status_fields))
  312. data = {
  313. 'data': documents_status
  314. }
  315. return data
  316. class DatasetApiKeyApi(Resource):
  317. max_keys = 10
  318. token_prefix = 'dataset-'
  319. resource_type = 'dataset'
  320. @setup_required
  321. @login_required
  322. @account_initialization_required
  323. @marshal_with(api_key_list)
  324. def get(self):
  325. keys = db.session.query(ApiToken). \
  326. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  327. all()
  328. return {"items": keys}
  329. @setup_required
  330. @login_required
  331. @account_initialization_required
  332. @marshal_with(api_key_fields)
  333. def post(self):
  334. # The role of the current user in the ta table must be admin or owner
  335. if not current_user.is_admin_or_owner:
  336. raise Forbidden()
  337. current_key_count = db.session.query(ApiToken). \
  338. filter(ApiToken.type == self.resource_type, ApiToken.tenant_id == current_user.current_tenant_id). \
  339. count()
  340. if current_key_count >= self.max_keys:
  341. flask_restful.abort(
  342. 400,
  343. message=f"Cannot create more than {self.max_keys} API keys for this resource type.",
  344. code='max_keys_exceeded'
  345. )
  346. key = ApiToken.generate_api_key(self.token_prefix, 24)
  347. api_token = ApiToken()
  348. api_token.tenant_id = current_user.current_tenant_id
  349. api_token.token = key
  350. api_token.type = self.resource_type
  351. db.session.add(api_token)
  352. db.session.commit()
  353. return api_token, 200
  354. class DatasetApiDeleteApi(Resource):
  355. resource_type = 'dataset'
  356. @setup_required
  357. @login_required
  358. @account_initialization_required
  359. def delete(self, api_key_id):
  360. api_key_id = str(api_key_id)
  361. # The role of the current user in the ta table must be admin or owner
  362. if not current_user.is_admin_or_owner:
  363. raise Forbidden()
  364. key = db.session.query(ApiToken). \
  365. filter(ApiToken.tenant_id == current_user.current_tenant_id, ApiToken.type == self.resource_type,
  366. ApiToken.id == api_key_id). \
  367. first()
  368. if key is None:
  369. flask_restful.abort(404, message='API key not found')
  370. db.session.query(ApiToken).filter(ApiToken.id == api_key_id).delete()
  371. db.session.commit()
  372. return {'result': 'success'}, 204
  373. class DatasetApiBaseUrlApi(Resource):
  374. @setup_required
  375. @login_required
  376. @account_initialization_required
  377. def get(self):
  378. return {
  379. 'api_base_url': (current_app.config['SERVICE_API_URL'] if current_app.config['SERVICE_API_URL']
  380. else request.host_url.rstrip('/')) + '/v1'
  381. }
  382. class DatasetRetrievalSettingApi(Resource):
  383. @setup_required
  384. @login_required
  385. @account_initialization_required
  386. def get(self):
  387. vector_type = current_app.config['VECTOR_STORE']
  388. if vector_type == 'milvus':
  389. return {
  390. 'retrieval_method': [
  391. 'semantic_search'
  392. ]
  393. }
  394. elif vector_type == 'qdrant' or vector_type == 'weaviate':
  395. return {
  396. 'retrieval_method': [
  397. 'semantic_search', 'full_text_search', 'hybrid_search'
  398. ]
  399. }
  400. else:
  401. raise ValueError("Unsupported vector db type.")
  402. class DatasetRetrievalSettingMockApi(Resource):
  403. @setup_required
  404. @login_required
  405. @account_initialization_required
  406. def get(self, vector_type):
  407. if vector_type == 'milvus':
  408. return {
  409. 'retrieval_method': [
  410. 'semantic_search'
  411. ]
  412. }
  413. elif vector_type == 'qdrant' or vector_type == 'weaviate':
  414. return {
  415. 'retrieval_method': [
  416. 'semantic_search', 'full_text_search', 'hybrid_search'
  417. ]
  418. }
  419. else:
  420. raise ValueError("Unsupported vector db type.")
  421. api.add_resource(DatasetListApi, '/datasets')
  422. api.add_resource(DatasetApi, '/datasets/<uuid:dataset_id>')
  423. api.add_resource(DatasetQueryApi, '/datasets/<uuid:dataset_id>/queries')
  424. api.add_resource(DatasetIndexingEstimateApi, '/datasets/indexing-estimate')
  425. api.add_resource(DatasetRelatedAppListApi, '/datasets/<uuid:dataset_id>/related-apps')
  426. api.add_resource(DatasetIndexingStatusApi, '/datasets/<uuid:dataset_id>/indexing-status')
  427. api.add_resource(DatasetApiKeyApi, '/datasets/api-keys')
  428. api.add_resource(DatasetApiDeleteApi, '/datasets/api-keys/<uuid:api_key_id>')
  429. api.add_resource(DatasetApiBaseUrlApi, '/datasets/api-base-info')
  430. api.add_resource(DatasetRetrievalSettingApi, '/datasets/retrieval-setting')
  431. api.add_resource(DatasetRetrievalSettingMockApi, '/datasets/retrieval-setting/<string:vector_type>')