| 12345678910111213141516171819202122232425262728293031323334353637383940 | import osimport dashscopeimport pytestfrom core.model_runtime.entities.rerank_entities import RerankResultfrom core.model_runtime.errors.validate import CredentialsValidateFailedErrorfrom core.model_runtime.model_providers.tongyi.rerank.rerank import GTERerankModeldef test_validate_credentials():    model = GTERerankModel()    with pytest.raises(CredentialsValidateFailedError):        model.validate_credentials(model="get-rank", credentials={"dashscope_api_key": "invalid_key"})    model.validate_credentials(        model="get-rank", credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")}    )def test_invoke_model():    model = GTERerankModel()    result = model.invoke(        model=dashscope.TextReRank.Models.gte_rerank,        credentials={"dashscope_api_key": os.environ.get("TONGYI_DASHSCOPE_API_KEY")},        query="什么是文本排序模型",        docs=[            "文本排序模型广泛用于搜索引擎和推荐系统中,它们根据文本相关性对候选文本进行排序",            "量子计算是计算科学的一个前沿领域",            "预训练语言模型的发展给文本排序模型带来了新的进展",        ],        score_threshold=0.7,    )    assert isinstance(result, RerankResult)    assert len(result.docs) == 1    assert result.docs[0].index == 0    assert result.docs[0].score >= 0.7
 |